Skip to main content

Advertisement

Log in

Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Aberrant expression of potassium (K+) channels contributes to cancer cell proliferation and apoptosis, and K+ channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis.

Methods

The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry.

Results

Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P < 0.05) was demonstrated at 96 h in SKOV-3 and OVCAR-3 cells incubated TREK-1 modulating agents. Curcumin caused a significant reduction in early apoptosis in SKOV-3 (P < 0.001) and OVCAR-3 (P < 0.0001) cells and a significant increase in late apoptosis in SKOV-3 (P < 0.01) and OVCAR-3 cells (P < 0.0001).

Conclusions

TREK-1 and -2 are expressed in normal ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer Research UK: Ovarian cancer statistics. [Internet]. [Cited: 2012, December]. Available from: http://info.cancerresearchuk.org/cancerstats/keyfacts/ovarian-cancer/uk-ovarian-cancer-statistics.

  2. Ozols RF. Challenges for chemotherapy in ovarian cancer. Ann Oncol. 2006;17(Suppl 5):181–7.

    Article  Google Scholar 

  3. Ding XW, Yan JJ, An P, Lu P, Luo HS. Aberrant expression of ether a go-go potassium channel in colorectal cancer patients and cell lines. World J Gastroenterol. 2007;13:1257–61.

    PubMed  CAS  Google Scholar 

  4. Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, et al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell. 2003;3:297–302.

    Article  PubMed  CAS  Google Scholar 

  5. Voloshyna I, Besana A, Castillo M, Matos T, Weinstein IB, Mansukhani M, et al. TREK-1 is a novel molecular target in prostate cancer. Cancer Res. 2008;68:1197–203.

    Article  PubMed  CAS  Google Scholar 

  6. Felipe A, Vicente R, Villalonga N, Roura-Ferrer M, Martinez-Marmol R, Sole L, et al. Potassium channels: new targets in cancer therapy. Cancer Detect Prev. 2006;30:375–85.

    Article  PubMed  CAS  Google Scholar 

  7. Nilius B, Schwarz G, Droogmans G. Control of intracellular calcium by membrane potential in human melanoma cells. Am J Physiol. 1993;265(6 Pt 1):1501–10.

    Google Scholar 

  8. Pancrazio JJ, Tabbara IA, Kim YI. Voltage-activated K+ conductance and cell proliferation in small-cell lung cancer. Anticancer Res. 1993;13:1231–4.

    PubMed  CAS  Google Scholar 

  9. Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol. 1995;162:163–71.

    Article  PubMed  CAS  Google Scholar 

  10. Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci. 2008;29:566–75.

    Article  PubMed  CAS  Google Scholar 

  11. Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature. 1995;376:690–5.

    Article  PubMed  CAS  Google Scholar 

  12. Honore E. The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci. 2007;8:251–61.

    Article  PubMed  CAS  Google Scholar 

  13. Patel AJ, Lazdunski M, Honore E. Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol. 2001;13:422–8.

    Article  PubMed  CAS  Google Scholar 

  14. Marklund L, Henriksson R, Grankvist K. Cisplatin-induced apoptosis of mesothelioma cells is affected by potassium ion flux modulator amphotericin B and bumetanide. Int J Cancer. 2001;93:577–83.

    Article  PubMed  CAS  Google Scholar 

  15. Shepherd TG, Campbell EL, Nachtigal MW. Primary culture of ovarian surface epithelial cells and ascites-derived ovarian cancer cells from patients. Nat Protoc. 2007;1:2643–9.

    Article  Google Scholar 

  16. Asher V, Khan R, Warren A, Shaw R, Schalkwyk GV, Bali A, et al. The Eag potassium channel as a new prognostic marker in ovarian cancer. Diagn Pathol. 2010;5:78.

    Article  PubMed  CAS  Google Scholar 

  17. Asher V, Warren A, Shaw R, Sowter H, Bali A, Khan R. The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int. 2011;11:6.

    Article  PubMed  CAS  Google Scholar 

  18. Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, et al. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA. 2003;100:7803–7.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch. 2004;448:274–86.

    Article  PubMed  CAS  Google Scholar 

  20. Patel AJ, Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch. 2004;448:261–73.

    Article  PubMed  CAS  Google Scholar 

  21. Lepple-Wienhues A, Berweck S, Bohmig M, Leo CP, Meyling B, Garbe C, et al. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol. 1996;151:149–57.

    Article  PubMed  CAS  Google Scholar 

  22. Nilius B, Wohlrab W. Potassium channels and regulation of proliferation of human melanoma cells. J Physiol. 1992;445:537–48.

    PubMed  CAS  Google Scholar 

  23. Tania M, Khan MA, Song Y. Association of lipid metabolism with ovarian cancer. Curr Oncol. 2010;17:6–11.

    PubMed  CAS  Google Scholar 

  24. Gansler TS, Hardman W 3rd, Hunt DA, Schaffel S, Hennigar RA. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol. 1997;28:686–92.

    Article  PubMed  CAS  Google Scholar 

  25. Fujita T, Miyamoto S, Onoyama I, Sonoda K, Mekada E, Nakano H. Expression of lysophosphatidic acid receptors and vascular endothelial growth factor mediating lysophosphatidic acid in the development of human ovarian cancer. Cancer Lett. 2003;192:161–9.

    Article  PubMed  CAS  Google Scholar 

  26. Harguindey S, Orive G. Luis Pedraz J, Paradiso A, Reshkin SJ. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—one single nature. Biochim Biophys Acta. 2005;1756:1–24.

    PubMed  CAS  Google Scholar 

  27. Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res. 2010;3:11.

    Article  PubMed  Google Scholar 

  28. Enyeart JA, Liu H, Enyeart JJ. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells. Biochem Biophys Res Commun. 2008;370:623–8.

    Article  PubMed  CAS  Google Scholar 

  29. Park KJ, Baker SA, Cho SY, Sanders KM, Koh SD. Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol. 2005;144:1126–37.

    Article  PubMed  CAS  Google Scholar 

  30. Ditscheid B, Funfstuck R, Busch M, Schubert R, Gerth J, Jahreis G. Effect of l-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study. Eur J Clin Nutr. 2005;59:768–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Andrea Gooding for blinding of archival samples.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Innamaa or R. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innamaa, A., Jackson, L., Asher, V. et al. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer. Clin Transl Oncol 15, 910–918 (2013). https://doi.org/10.1007/s12094-013-1022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1022-4

Keywords

Navigation