Advertisement

Clinical and Translational Oncology

, Volume 15, Issue 4, pp 253–258 | Cite as

Dynamic regulation of cancer stem cells and clinical challenges

  • Chao Ni
  • Jian HuangEmail author
Educational Series – Blue Series ADVANCES IN TRANSLATIONAL ONCOLOGY

Abstract

A small population of cancer cells referred to as cancer stem cells (CSCs) have received particular attention, as they have been revealed to acquire stem cell-like properties and become the main cause of tumor propagation, metastasis and drug resistance. The CSC theory of tumor formation was believed to follow the hierarchical model initially, and therefore many CSC-targeted therapy methods were expected to cure cancer by eradicating CSCs. However, subsequent CSC research has revealed that rather than a distinct entity, the CSC is a dynamic status that can be continually dedifferentiated from progenitor or differentiated cancer cells. Elucidation of this bidirectional transition mechanism would help perfect the CSC theory and be of great value in the development of more effective anti-cancer drugs. Here, we reviewed the mechanisms of reciprocal conversion between non-CSCs and CSCs. Moreover, several approaches of target CSCs and non-CSCs together with unbiased eradication of all cancer cells are also discussed.

Keywords

Cancer stem cells Reprogramming Dedifferentiation Epigenetics Microenvironment 

Notes

Acknowledgments

The authors would like to thank the members of the group for useful discussions.

Conflict of interest

No potential conflicts of interest were disclosed.

References

  1. 1.
    Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296PubMedCrossRefGoogle Scholar
  2. 2.
    Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Nat Acad Sci USA 108(19):7950–7955PubMedCrossRefGoogle Scholar
  3. 3.
    Chang HH, Chen BY, Wu CY et al (2011) Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 18:6PubMedCrossRefGoogle Scholar
  4. 4.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  5. 5.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar
  6. 6.
    Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30(36):3833–3845PubMedCrossRefGoogle Scholar
  7. 7.
    Jeter CR, Badeaux M, Choy G et al (2009) Functional evidence that the self-renewal gene Nanog regulates human tumor development. Stem Cells 27(5):993–1005PubMedCrossRefGoogle Scholar
  8. 8.
    Chiou SH, Wang ML, Chou YT et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444PubMedCrossRefGoogle Scholar
  9. 9.
    Narva E, Rahkonen N, Emani MR et al (2012) RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 30(3):452–460PubMedCrossRefGoogle Scholar
  10. 10.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCrossRefGoogle Scholar
  11. 11.
    Kim JB, Greber B, Arauzo-Bravo MJ et al (2009) Direct reprogramming of human neural stem cells by Oct4. Nature 461(7264):649–653PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar SM, Liu S, Lu H et al (2012) Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. doi: 10.1038/onc.2011.656
  13. 13.
    Ikushima H, Todo T, Ino Y et al (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441PubMedCrossRefGoogle Scholar
  14. 14.
    Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5(5):504–514PubMedCrossRefGoogle Scholar
  15. 15.
    Li Y, Li A, Glas M et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Nat Acad Sci USA 108(24):9951–9956PubMedCrossRefGoogle Scholar
  16. 16.
    Mizuno H, Spike BT, Wahl GM, Levine AJ (2010) Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Nat Acad Sci USA 107(52):22745–22750PubMedCrossRefGoogle Scholar
  17. 17.
    Motohara T, Masuko S, Ishimoto T et al (2011) Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis 32(11):1597–1606PubMedCrossRefGoogle Scholar
  18. 18.
    Gill JG, Langer EM, Lindsley RC et al (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29(5):764–776PubMedCrossRefGoogle Scholar
  19. 19.
    Tellez CS, Juri DE, Do K et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097PubMedCrossRefGoogle Scholar
  20. 20.
    Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495PubMedCrossRefGoogle Scholar
  21. 21.
    Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedCrossRefGoogle Scholar
  22. 22.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedCrossRefGoogle Scholar
  23. 23.
    Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107PubMedCrossRefGoogle Scholar
  24. 24.
    Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848PubMedCrossRefGoogle Scholar
  25. 25.
    Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123PubMedCrossRefGoogle Scholar
  26. 26.
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412PubMedCrossRefGoogle Scholar
  27. 27.
    Hong H, Takahashi K, Ichisaka T et al (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259):1132–1135PubMedCrossRefGoogle Scholar
  28. 28.
    Choi YJ, Lin CP, Ho JJ et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature cell Biol 13(11):1353–1360PubMedCrossRefGoogle Scholar
  29. 29.
    Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRefGoogle Scholar
  30. 30.
    Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of TGF-Beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5(5):491–503PubMedCrossRefGoogle Scholar
  31. 31.
    Subramanyam D, Lamouille S, Judson RL et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedCrossRefGoogle Scholar
  32. 32.
    Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834PubMedCrossRefGoogle Scholar
  33. 33.
    Zhu Y, Jiang Q, Lou X et al (2012) MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS ONE 7(4):e35147PubMedCrossRefGoogle Scholar
  34. 34.
    Yang P, Wang Y, Chen J et al (2011) RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for Sox2 in reprogramming somatic cells to pluripotency. Stem Cells 29(5):791–801PubMedCrossRefGoogle Scholar
  35. 35.
    Ang YS, Tsai SY, Lee DF et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197PubMedCrossRefGoogle Scholar
  36. 36.
    Farthing CR, Ficz G, Ng RK et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4(6):e1000116PubMedCrossRefGoogle Scholar
  37. 37.
    Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353PubMedCrossRefGoogle Scholar
  38. 38.
    Jullien J, Astrand C, Halley-Stott RP, Garrett N, Gurdon JB (2010) Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Nat Acad Sci USA 107(12):5483–5488PubMedCrossRefGoogle Scholar
  39. 39.
    Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16(12):5719–5735PubMedCrossRefGoogle Scholar
  40. 40.
    Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of Oct4 and Nanog regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18(5):1543–1553PubMedCrossRefGoogle Scholar
  41. 41.
    Kyle AH, Baker JH, Minchinton AI (2012) Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer Res 72(3):801–809PubMedCrossRefGoogle Scholar
  42. 42.
    Mathieu J, Zhang Z, Zhou W et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652PubMedCrossRefGoogle Scholar
  43. 43.
    Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284PubMedCrossRefGoogle Scholar
  44. 44.
    Vermeulen L, De Sousa EMF, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRefGoogle Scholar
  45. 45.
    Scheel C, Eaton EN, Li SH et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940PubMedCrossRefGoogle Scholar
  46. 46.
    Yao C, Lin Y, Chua MS et al (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121(9):1949–1957PubMedCrossRefGoogle Scholar
  47. 47.
    Elaraj DM, Weinreich DM, Varghese S et al (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res Off J Am Assoc Cancer Res 12(4):1088–1096CrossRefGoogle Scholar
  48. 48.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRefGoogle Scholar
  49. 49.
    Liu S, Ginestier C, Ou SJ et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624PubMedCrossRefGoogle Scholar
  50. 50.
    Sansone P, Storci G, Tavolari S et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig 117(12):3988–4002PubMedCrossRefGoogle Scholar
  51. 51.
    Xie G, Yao Q, Liu Y et al (2012) IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol 40(4):1171–1179PubMedGoogle Scholar
  52. 52.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedCrossRefGoogle Scholar
  53. 53.
    Fulciniti M, Hideshima T, Vermot-Desroches C et al (2009) A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res 15(23):7144–7152CrossRefGoogle Scholar
  54. 54.
    Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402PubMedCrossRefGoogle Scholar
  55. 55.
    Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G (2008) IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 7(3):309–313PubMedCrossRefGoogle Scholar
  56. 56.
    Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162PubMedCrossRefGoogle Scholar
  57. 57.
    Wang K, Liu L, Zhang T et al (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomed 6:3207–3218Google Scholar
  58. 58.
    Hovinga KE, Shimizu F, Wang R et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029PubMedCrossRefGoogle Scholar
  59. 59.
    Wang YK, Zhu YL, Qiu FM et al (2010) Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis 31(8):1376–1380PubMedCrossRefGoogle Scholar
  60. 60.
    Ito K, Bernardi R, Morotti A et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078PubMedCrossRefGoogle Scholar
  61. 61.
    Azzi S, Bruno S, Giron-Michel J et al (2011) Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 103(24):1884–1898PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33(2):679–691PubMedCrossRefGoogle Scholar
  63. 63.
    Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644PubMedCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2012

Authors and Affiliations

  1. 1.Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Department of Oncology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations