Clinical and Translational Oncology

, Volume 13, Issue 5, pp 301–306 | Cite as

New DNA sequencing technologies open a promising era for cancer research and treatment

Educational Series Current Technology in Cancer Research and Treatment

Abstract

DNA sequencing techniques have evolved rapidly in the last 5 years by the introduction of new sequencing machines, denominated second-generation sequencers, next-generation sequencers or massive parallel sequencers. These technologies make it possible to determine the complete sequence of the human genome, or selected regions of it, at accessible prices and in a short period of time. Therefore, it is now possible to determine the nucleotide sequence of the DNA from cancer cells and to compare it to that of normal cells to identify the genetic changes involved in cancer generation. Actually, the genome of more than 15 tumour types has been determined in the last 3 years. The results obtained have allowed the identification of new cancer driving genes, new susceptibility genes and the detailed identification of genome structural reorganisations. In this review a brief description of the new sequencing technologies will be presented. Recent findings on cancer genome and exome sequencing will be summarised. Finally, the potential applications of these new technologies to cancer prognosis, diagnosis and therapeutics will be discussed.

Keywords

Next-generation sequencing Second-generation sequencing Deep sequencing Transcriptome Nucleotide variation Genomic rearrangements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  2. 2.
    Schweiger MR, Kerick M, Timmermann B, Isau M (2011) The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 30:199–210PubMedCrossRefGoogle Scholar
  3. 3.
    Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270PubMedCrossRefGoogle Scholar
  5. 5.
    Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19:959–966PubMedCrossRefGoogle Scholar
  6. 6.
    Johansson H, Isaksson M, Sorqvist EF et al (2010) Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res 39:e8PubMedCrossRefGoogle Scholar
  7. 7.
    Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806PubMedCrossRefGoogle Scholar
  8. 8.
    Marguerat S, Wilhelm BT, Bahler J (2008) Nextgeneration sequencing: applications beyond genomes. Biochem Soc Trans 36:1091–1096PubMedCrossRefGoogle Scholar
  9. 9.
    Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18:R163–168PubMedCrossRefGoogle Scholar
  10. 10.
    Ocana A, Pandiella A (2010) Personalized therapies in the cancer “omics“ era. Mol Cancer 9:202PubMedCrossRefGoogle Scholar
  11. 11.
    Pfeifer GP, Hainaut P (2010) Next-generation sequencing: emerging lessons on the origins of human cancer. Curr Opin Oncol 23:62–68CrossRefGoogle Scholar
  12. 12.
    Shuen A, Foulkes WD (2010) Clinical implications of next-generation sequencing for cancer medicine. Curr Oncol 17:39–42PubMedGoogle Scholar
  13. 13.
    Katsios C, Ziogas DE, Liakakos T et al (2010) Translating cancer genomes sequencing revolution into surgical oncology practice. J Surg Res (in press)Google Scholar
  14. 14.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696PubMedCrossRefGoogle Scholar
  15. 15.
    Fujimoto A, Nakagawa H, Hosono N et al (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat Genet 42:931–936PubMedCrossRefGoogle Scholar
  16. 16.
    Pleasance ED, Cheetham RK, Stephens PJ et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196PubMedCrossRefGoogle Scholar
  17. 17.
    Pleasance ED, Stephens PJ, O’Meara S et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190PubMedCrossRefGoogle Scholar
  18. 18.
    Lee W, Jiang Z, Liu J et al (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465:473–477PubMedCrossRefGoogle Scholar
  19. 19.
    Timmermann B, Kerick M, Roehr C et al (2010) Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 5:e15661PubMedCrossRefGoogle Scholar
  20. 20.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  21. 21.
    Varela I, Tarpey P, Raine K et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542PubMedCrossRefGoogle Scholar
  22. 22.
    Harbour JW, Onken MD, Roberson ED et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330:1410–1413PubMedCrossRefGoogle Scholar
  23. 23.
    Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005PubMedCrossRefGoogle Scholar
  24. 24.
    Shah SP, Morin RD, Khattra J et al (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813PubMedCrossRefGoogle Scholar
  25. 25.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40PubMedCrossRefGoogle Scholar
  26. 26.
    Greif PA, Eck SH, Konstandin NP et al (2011) Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia (in press) Google Scholar
  27. 27.
    Weng L, Wu X, Gao H et al (2010) MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol 222:41–51PubMedGoogle Scholar
  28. 28.
    Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154:277–287PubMedCrossRefGoogle Scholar
  29. 29.
    Jones S, Hruban RH, Kamiyama M et al (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217PubMedCrossRefGoogle Scholar
  30. 30.
    McBride DJ, Orpana AK, Sotiriou C et al (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49:1062–1069PubMedCrossRefGoogle Scholar
  31. 31.
    Ley TJ, Mardis ER, Ding L et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456:66–72PubMedCrossRefGoogle Scholar
  32. 32.
    Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066PubMedCrossRefGoogle Scholar
  33. 33.
    Bueno R, De Rienzo A, Dong L et al (2010) Second generation sequencing of the mesothelioma tumor genome. PLoS One 5:e10612PubMedCrossRefGoogle Scholar
  34. 34.
    Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113PubMedCrossRefGoogle Scholar
  35. 35.
    Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2011

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas CSIC/UAM Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPaz)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)MadridSpain

Personalised recommendations