Skip to main content

Advertisement

Log in

Spanish radiobiological pattern of care in lung cancer: a GOECP/SEOR study

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Introduction

A survey regarding radiobiological questions in the treatment of lung cancer (LC) was done to study the clinical aspects of radiotherapy in Spain, in order to standardise treatment decisions.

Methods and materials

From November 2007 to March 2008, a survey was performed among radiation oncologists in Spain specialising in LC treatment via e-mail, which included questions regarding different radiobiological aspects of radiotherapy LC treatment. The extent of the resulting material made it necessary to divide it into two parts; the first is presented in this article. The second, which includes items about α/β-NTCP/TCP values and reirradiation criteria, will be reported elsewhere.

Results

Thirty-one radiation therapists from 29 radiation oncology departments answered the survey. 77.4–93.5% of responders used the basic formula from the linear-quadratic model and/or computer software for radiobiological calculations; 100% used lung (mostly V20, median <30%) and spinal cord constraints (mostly a median of physical maximum dose <45.5 Gy); and 90.3% used heart and oesophagus constraints (very heterogeneous parameters in both organs).

Conclusions

Radiobiological considerations are clearly present in the planning process of radiotherapy of LC in Spain, with a high coincidence with the literature regarding lung and spinal cord constraints. The heterogeneity shown for oesophagus and heart results demonstrates the need for continuing investigation into the standardisation of clinical, dosimetric and radiobiologic aspects of the treatment of this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casas F, Viñolas N, Sanchez-Reyes A et al (2006) Spanish patterns of care for 3D radiotherapy in non-small lung cancer. Int J Radiat Oncol Biol Phys 65:138–142

    PubMed  Google Scholar 

  2. Casas F, SEOR WORKING GROUP (2007) Foundation of the“Grupo Oncológico para el estudio del Cáncer de Pulmón” (GOECP/SEOR). Clin Transl Oncol 9:345–346

    Article  CAS  PubMed  Google Scholar 

  3. Emami B, Lyman J, Brouwn A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    CAS  PubMed  Google Scholar 

  4. Willner J, Jost A, Baier K, Flentje M (2003) A little to lot or a lot a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy. Strahlenther Onkol 179:548–556

    Article  PubMed  Google Scholar 

  5. Graham MV, Purdy JA, Emami B et al (1998) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Google Scholar 

  6. Tsujino K, Hirota S, Endo M et al (2003) Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 55:110–115

    Article  PubMed  Google Scholar 

  7. Bradley J, Graham MV, Winter K et al (2005) Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61:318–328

    PubMed  Google Scholar 

  8. Armstrong JG, Raben A, Zelefsky M et al (1997) Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. Radiother Oncol 44:17–22

    Article  CAS  PubMed  Google Scholar 

  9. Hernando ML, Marks LB, Bentel GC et al (2001) Radiation induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51:650–659

    CAS  PubMed  Google Scholar 

  10. Lee HK, Vaporciyan AA, Cox JD et al (2003) Postoperative pulmonary complications alter preoperative chemoradiation for esophageal carcinoma: correlation with pulmonary dose-volume histogram parameters. Int J Radiat Oncol Biol Phys 57:1317–1322

    Article  PubMed  Google Scholar 

  11. Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small cell lung cancer (NSCLC) treated with concurrent chemoradiotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407

    CAS  PubMed  Google Scholar 

  12. Gopal R, Tucker SL, Komaki R et al (2003) Dosevolume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 56:106–113

    PubMed  Google Scholar 

  13. Seppenwoolde Y, Lebesque12 JV, de Jaeger K et al (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis. Int J Radiat Oncol Biol Phys 55:724–735

    PubMed  Google Scholar 

  14. Rodrigues G, Lock M, D’souza D et al (2004) Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer: a systematic review. Radiother Oncol 71:127–138

    Article  PubMed  Google Scholar 

  15. Kim TH, Cho KH, Pyo HR et al (2005) Dosevolumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 235:208–215

    Article  PubMed  Google Scholar 

  16. Kong FM, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65:1075–1086

    PubMed  Google Scholar 

  17. Ball D, Bishop J, Smith J et al (1995) A phase III study of accelerated radiotherapy with and without carboplatin in non-small cell lung cancer: an interim toxicity analysis of the first 100 patients. Int J Radiat Oncol Biol Phys 31:267–272

    CAS  PubMed  Google Scholar 

  18. Choy H, LaPorte K, Knill-Selby E et al (1999) Esophagitis in combined modality therapy for locally advanced non-small cell lung cancer. Semin Radiat Oncol 9[Suppl 1]:90–96

    CAS  PubMed  Google Scholar 

  19. Yuan S, Sun X, Li M et al (2007) A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III non small cell lung cancer. Am J Clin Oncol 30:239–244

    Article  CAS  PubMed  Google Scholar 

  20. Hirota S, Tsujino K, Endo M et al (2001) Dosimetric predictors of radiation esophagitis in patients treated for non-small-cell lung cancer with carboplatin/paclitaxel/radiotherapy. Int J Radiat Oncol Biol Phys 51:291–295

    CAS  PubMed  Google Scholar 

  21. Bradley J, Deasy JO, Bentzen S, El-Naqa I (2004) Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys 58:1106–1113

    PubMed  Google Scholar 

  22. Kim TH, Cho KH, Pyo HR et al (2005) Dosevolumetric parameters of acute esophageal toxicity in patients with lung cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 62:995–1002

    Article  PubMed  Google Scholar 

  23. Maguire PD, Sibley GS, Zhou SM et al (1999) Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys 45:97–103

    CAS  PubMed  Google Scholar 

  24. Takeda K, Remoto K, Saito H et al (2005) Dosimetric correlations of acute esophagitis in lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:626–629

    PubMed  Google Scholar 

  25. Wei X, Liu H, Tucker S et al (2006) Risk factors for acute esophagitis in non-small-cell lung cancer patients treated with concurrent chemotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 66:100–107

    PubMed  Google Scholar 

  26. Algara M, Rodríguez N, Viñals P et al (2007) Prevention of radiochemotherapy-induced esophagitis with glutamine. A pilot study. Int J Radiat Oncol Biol Phys 69:342–349

    CAS  PubMed  Google Scholar 

  27. Rodríguez N, Algara M, Foro P et al (2009) Predictors of acute esophagitis in lung cancer patients treated with concurrent three-dimensional conformal radiotherapy (3D-CRT) and chemotherapy. Int J Radiat Oncol Biol Phys 73:810–817

    PubMed  Google Scholar 

  28. Singh AK, Lockett MA, Bradley JD (2003) Predictors of radiation-induced esophageal toxicity in patients in patients with non-small cell lung cancer treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 55:337–341

    PubMed  Google Scholar 

  29. Ahn S, Kahn D, Zhou S et al (2005) Dosimetric and clinical predictors for radiation-induced esophageal injury. Int J Radiat Oncol Biol Phys 61:335–347

    PubMed  Google Scholar 

  30. Boden G (1948) Radiation myelitis of the cervical spinal cord. Br J Radiol 21:464–469

    Article  CAS  PubMed  Google Scholar 

  31. Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    CAS  PubMed  Google Scholar 

  32. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  CAS  PubMed  Google Scholar 

  33. Martel MK, Sahijdak WM, Ten Haken RK et al (1998) Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys 40:155–161

    CAS  PubMed  Google Scholar 

  34. Kong FM, Pan C, Eisbruch A, Ten Haken RK (2007) Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 17:108–120

    Article  PubMed  Google Scholar 

  35. Sandri MT, Cardinale D, Zorzino L et al (2003) Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem 49:248–252

    Article  CAS  PubMed  Google Scholar 

  36. Pignon JP, Tribodet H, Scagliotti GV et al (2008) Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative group. J Clin Oncol 26:3552–3559

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to José A. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J.A., Chust, M., Delgado, R. et al. Spanish radiobiological pattern of care in lung cancer: a GOECP/SEOR study. Clin Transl Oncol 12, 292–298 (2010). https://doi.org/10.1007/s12094-010-0506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0506-8

Keywords

Navigation