Skip to main content

Advertisement

Log in

C-MET as a new therapeutic target for the development of novel anticancer drugs

  • Educational Series
  • Molecular Targets in Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

MET is a tyrosine kinase receptor that, upon binding of its natural ligand, the hepatocyte growth factor (HGF), is phosphorylated and subsequently activates different signalling pathways involved in proliferation, motility, migration and invasion. MET has been found to be aberrantly activated in human cancer via mutation, amplification or protein overexpression. MET expression and activation have been associated with prognosis in a number of tumour types and predict response to MET inhibitors in preclinical models. Here we review the HGF/MET signalling pathway, its role in human cancer and the different inhibitory strategies that have been developed for therapeutic use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benvenuti S, Comoglio PM (2007) The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 213:316–325

    Article  PubMed  CAS  Google Scholar 

  2. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  3. Trusolino L, Comoglio PM (2002) Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2:289–300

    Article  PubMed  CAS  Google Scholar 

  4. Peschard P, Fournier TM, Lamorte L et al (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8:995–1004

    Article  PubMed  CAS  Google Scholar 

  5. Abella JV, Peschard P, Naujokas MA et al (2005) Met/hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol 25:9632–9645

    Article  PubMed  CAS  Google Scholar 

  6. Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327:239–242

    Article  PubMed  CAS  Google Scholar 

  7. Gherardi E, Gray J, Stoker M et al (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A 86:5844–5848

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A 83:6489–6493

    Article  PubMed  CAS  Google Scholar 

  9. Naldini L, Weidner KM, Vigna E et al (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. Embo J 10:2867–2878

    PubMed  CAS  Google Scholar 

  10. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7:504–516

    Article  PubMed  CAS  Google Scholar 

  11. Stamos J, Lazarus RA, Yao X (2004) Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. Embo J 23: 2325–2335

    Article  PubMed  CAS  Google Scholar 

  12. Zhang YW, Vande Woude GF (2003) HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88:408–417

    Article  PubMed  CAS  Google Scholar 

  13. Corso S, Comoglio PM, Giordano S (2005) Cancer therapy: can the challenge be MET? Trends Mol Med 11:284–292

    Article  PubMed  CAS  Google Scholar 

  14. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645

    Article  PubMed  CAS  Google Scholar 

  15. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214

    Article  PubMed  CAS  Google Scholar 

  16. Zeng Q, Chen S, You Z et al (2002) Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J Biol Chem 277:25203–25208

    Article  PubMed  CAS  Google Scholar 

  17. Tulasne D, Foveau B (2008) The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ 15:427–434

    Article  PubMed  CAS  Google Scholar 

  18. Migliore C, Giordano S (2008) Molecular cancer therapy: can our expectation be MET? Eur J Cancer 44:641–651

    Article  PubMed  CAS  Google Scholar 

  19. Birchmeier C, Gherardi E (1998) Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8:404–410

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt L, Duh FM, Chen F et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73

    Article  PubMed  CAS  Google Scholar 

  21. Maina F, Casagranda F, Audero E et al (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87:531–542

    Article  PubMed  CAS  Google Scholar 

  22. Maina F, Pante G, Helmbacher F et al (2001) Coupling Met to specific pathways results in distinct developmental outcomes. Mol Cell 7:1293–1306

    Article  PubMed  CAS  Google Scholar 

  23. Huh CG, Factor VM, Sanchez A (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A 101:4477–4482

    Article  PubMed  CAS  Google Scholar 

  24. Iyer A, Kmiecik TE, Park M et al (1990) Structure, tissue-specific expression, and transforming activity of the mouse met protooncogene. Cell Growth Differ 1:87–95

    PubMed  CAS  Google Scholar 

  25. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225:1–26

    Article  PubMed  CAS  Google Scholar 

  26. Zhang YW, Su Y, Volpert OV, Vande Woude GF (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A 100:12718–12723

    Article  PubMed  CAS  Google Scholar 

  27. Cooper CS, Park M, Blair DG et al (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33

    Article  PubMed  CAS  Google Scholar 

  28. Liang TJ, Reid AE, Xavier R (1996) Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 97:2872–2877

    Article  PubMed  CAS  Google Scholar 

  29. Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A 88:4892–4896

    Article  PubMed  CAS  Google Scholar 

  30. Smolen GA, Sordella R, Muir B et al (2006) Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A 103:2316–2321

    Article  PubMed  CAS  Google Scholar 

  31. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  32. Carracedo A, Egervari K, Salido M et al (2009) FISH and immunohistochemical status of the hepatocyte growth factor receptor (c-Met) in 184 invasive breast tumors. Breast Cancer Res 11:402

    Article  PubMed  CAS  Google Scholar 

  33. Taulli R, Scuoppo C, Bersani F et al (2006) Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66:4742–4749

    Article  PubMed  CAS  Google Scholar 

  34. Houldsworth J, Cordon-Cardo C, Ladanyi M et al (1990) Gene amplification in gastric and esophageal adenocarcinomas. Cancer Res 50:6417–6422

    PubMed  CAS  Google Scholar 

  35. Umeki K, Shiota G, Kawasaki H (1999) Clinical significance of c-met oncogene alterations in human colorectal cancer. Oncology 56:314–321

    Article  PubMed  CAS  Google Scholar 

  36. Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937

    Article  PubMed  Google Scholar 

  37. Tong CY, Hui AB, Yin XL (2004) Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and arraybased comparative genomic hybridization. J Neurosurg 100:187–193

    PubMed  CAS  Google Scholar 

  38. Beroukhim R, Getz G, Nghiemphu L et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104:20007–20012

    Article  PubMed  Google Scholar 

  39. Cappuzzo F, Marchetti A, Skokan M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27:1667–1674

    Article  PubMed  Google Scholar 

  40. Go H, Jeon YK, Park HJ et al (2010) High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol 5(3):305–313

    Article  PubMed  Google Scholar 

  41. Zeng ZS, Weiser MR, Kuntz E et al (2008) c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett 265:258–269

    Article  PubMed  CAS  Google Scholar 

  42. Park WS, Dong SM, Kim SY et al (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 59:307–310

    PubMed  CAS  Google Scholar 

  43. Lee JH, Han SU, Cho H et al (2000) A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19:4947–4953

    Article  PubMed  CAS  Google Scholar 

  44. Seiwert TY, Jagadeeswaran R, Faoro L et al (2009) The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res 69:3021–3031

    Article  PubMed  CAS  Google Scholar 

  45. Sattler M, Salgia R (2007) c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep 9:102–108

    Article  PubMed  CAS  Google Scholar 

  46. Ma PC, Kijima T, Maulik G et al (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63:6272–6281

    PubMed  CAS  Google Scholar 

  47. Ma PC, Jagadeeswaran R, Jagadeesh S et al (2005) Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 65:1479–1488

    Article  PubMed  CAS  Google Scholar 

  48. Jagadeeswaran R, Ma PC, Seiwert TY et al (2006) Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res 66:352–361

    Article  PubMed  CAS  Google Scholar 

  49. Puri N, Ahmed S, Janamanchi V et al (2007) c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 13:2246–2253

    Article  PubMed  CAS  Google Scholar 

  50. Puri N, Khramtsov A, Ahmed S et al (2007) A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angio genesis in mouse lung cancer xenografts. Cancer Res 67:3529–3534

    Article  PubMed  CAS  Google Scholar 

  51. Jeffers M, Schmidt L, Nakaigawa N et al (1997) Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A 94:11445–11450

    Article  PubMed  CAS  Google Scholar 

  52. Kong-Beltran M, Seshagiri S, Zha J et al (2006) Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66:283–289

    Article  PubMed  CAS  Google Scholar 

  53. Graveel C, Su Y, Koeman J et al (2004) Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. Proc Natl Acad Sci U S A 101:17198–17203

    Article  PubMed  CAS  Google Scholar 

  54. Di Renzo MF, Olivero M, Martone T et al (2000) Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19:1547–1555

    Article  PubMed  CAS  Google Scholar 

  55. Aebersold DM, Landt O, Berthou S et al (2003) Prevalence and clinical impact of Met Y1253Dactivating point mutation in radiotherapy-treated squamous cell cancer of the oropharynx. Oncogene 22:8519–8523

    Article  PubMed  CAS  Google Scholar 

  56. Lorenzato A, Olivero M, Patane S et al (2002) Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res 62:7025–7030

    PubMed  CAS  Google Scholar 

  57. Cañadas I, Arumi M, Lema L et al (2009) MET in small cell lung carcinoma (SCLC): effects of a MET inhibitor in SCLC cell lines and prognostic role of MET status in patients. J Clin Oncol (ASCO Meeting Abstracts) 27:e14617

    Google Scholar 

  58. Danilkovitch-Miagkova A, Zbar B (2002) Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 109:863–867

    PubMed  CAS  Google Scholar 

  59. Ichimura E, Maeshima A, Nakajima T, Nakamura T (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 87:1063–1069

    PubMed  CAS  Google Scholar 

  60. Cipriani NA, Abidoye OO, Vokes E, Salgia R (2009) MET as a target for treatment of chest tumors. Lung Cancer 63:169–179

    Article  PubMed  Google Scholar 

  61. Garcia S, Dales JP, Charafe-Jauffret E et al (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 38:830–841

    Article  PubMed  CAS  Google Scholar 

  62. Olivero M, Rizzo M, Madeddu R et al (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74:1862–1868

    PubMed  CAS  Google Scholar 

  63. Takanami I, Tanana F, Hashizume T et al (1996) Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: an evaluation of their expression as prognostic markers. Oncology 53:392–397

    Article  PubMed  CAS  Google Scholar 

  64. Tsao MS, Liu N, Chen JR et al (1998) Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. Lung Cancer 20:1–16

    Article  PubMed  CAS  Google Scholar 

  65. Natali PG, Prat M, Nicotra MR et al (1996) Overexpression of the met/HGF receptor in renal cell carcinomas. Int J Cancer 69:212–217

    Article  PubMed  CAS  Google Scholar 

  66. Di Renzo MF, Olivero M, Katsaros D et al (1994) Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58:658–662

    Article  PubMed  Google Scholar 

  67. Wong AS, Pelech SL, Woo MM et al (2001) Coexpression of hepatocyte growth factor-Met: an early step in ovarian carcinogenesis? Oncogene 20:1318–1328

    Article  PubMed  CAS  Google Scholar 

  68. Garcia S, Dales JP, Jacquemier J et al (2007) c-Met overexpression in inflammatory breast carcinomas: automated quantification on tissue microarrays. Br J Cancer 96:329–335

    Article  PubMed  CAS  Google Scholar 

  69. Takeuchi H, Bilchik A, Saha S et al (2003) c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res 9:1480–1488

    PubMed  CAS  Google Scholar 

  70. Sawada K, Radjabi AR, Shinomiya N et al (2007) c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res 67:1670–1679

    Article  PubMed  CAS  Google Scholar 

  71. Tolgay Ocal I, Dolled-Filhart M, D’Aquila TG et al (2003) Tissue microarray-based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 97:1841–1848

    Article  PubMed  CAS  Google Scholar 

  72. Gentile A, Trusolino L, Comoglio PM (2008) The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27:85–94

    Article  PubMed  CAS  Google Scholar 

  73. Boccaccio C, Gaudino G, Gambarotta G et al (1994) Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J Biol Chem 269:12846–12851

    PubMed  CAS  Google Scholar 

  74. Aguirre Ghiso JA, Alonso DF, Farias EF et al (1999) Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem 263:295–304

    Article  PubMed  CAS  Google Scholar 

  75. Michieli P, Basilico C, Pennacchietti S et al (1999) Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18:5221–5231

    Article  PubMed  CAS  Google Scholar 

  76. Koochekpour S, Jeffers M, Rulong S et al (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57:5391–5398

    PubMed  CAS  Google Scholar 

  77. Tuck AB, Park M, Sterns EE et al (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148:225–232

    PubMed  CAS  Google Scholar 

  78. Ferracini R, Olivero M, Di Renzo MF et al (1996) Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12:1697–1705

    PubMed  CAS  Google Scholar 

  79. Ferracini R, Di Renzo MF, Scotlandi K et al (1995) The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10:739–749

    PubMed  CAS  Google Scholar 

  80. Rong S, Segal S, Anver M et al (1994) Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci U S A 91:4731–4735

    Article  PubMed  CAS  Google Scholar 

  81. Lokker NA, Mark MR, Luis EA et al (1992) Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. Embo J 11:2503–2510

    PubMed  CAS  Google Scholar 

  82. Lietha D, Chirgadze DY, Mulloy B et al (2001) Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. Embo J 20:5543–5555

    Article  PubMed  CAS  Google Scholar 

  83. Matsumoto K, Kataoka H, Date K, Nakamura T (1998) Cooperative interaction between alpha- and beta-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J Biol Chem 273:22913–22920

    Article  PubMed  CAS  Google Scholar 

  84. Trusolino L, Pugliese L, Comoglio PM (1998) Interactions between scatter factors and their receptors: hints for therapeutic applications. Faseb J 12:1267–1280

    PubMed  CAS  Google Scholar 

  85. Chan AM, Rubin JS, Bottaro DP et al (1991) Identification of a competitive HGF antagonist encoded by an alternative transcript. Science 254: 1382–1385

    Article  PubMed  CAS  Google Scholar 

  86. Montesano R, Soriano JV, Malinda KM (1998) Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ 9:355–365

    PubMed  CAS  Google Scholar 

  87. Matsumoto K, Nakamura T (2003) NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci 94:321–327

    Article  PubMed  CAS  Google Scholar 

  88. Matsumoto K, Nakamura T (2008) NK4 gene therapy targeting HGF-Met and angiogenesis. Front Biosci 13:1943–1951

    Article  PubMed  CAS  Google Scholar 

  89. Mazzone M, Basilico C, Cavassa S et al (2004) An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J Clin Invest 114:1418–1432

    PubMed  CAS  Google Scholar 

  90. Michieli P, Mazzone M, Basilico C et al (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6:61–73

    Article  PubMed  CAS  Google Scholar 

  91. Kong-Beltran M, Stamos J, Wickramasinghe D (2004) The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 6:75–84

    Article  PubMed  CAS  Google Scholar 

  92. Martens T, Schmidt NO, Eckerich C et al (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152

    Article  PubMed  CAS  Google Scholar 

  93. Petrelli A, Circosta P, Granziero L et al (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 103:5090–5095

    Article  PubMed  CAS  Google Scholar 

  94. Kim KJ, Wang L, Su YC et al (2006) Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin Cancer Res 12:1292–1298

    Article  PubMed  CAS  Google Scholar 

  95. Jun HT, Sun J, Rex K (2007) AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 13:6735–6742

    Article  PubMed  CAS  Google Scholar 

  96. Morotti A, Mila S, Accornero P, et al (2002) K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21:4885–4893

    Article  PubMed  CAS  Google Scholar 

  97. Sattler M, Pride YB, Ma P et al (2003) A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res 63:5462–5469

    PubMed  CAS  Google Scholar 

  98. Christensen JG, Schreck R, Burrows J et al (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63:7345–7355

    PubMed  CAS  Google Scholar 

  99. Berthou S, Aebersold DM, Schmidt LS et al (2004) The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene 23:5387–5393

    Article  PubMed  CAS  Google Scholar 

  100. Zou HY, Li Q, Lee JH et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417

    Article  PubMed  CAS  Google Scholar 

  101. Zhang Y, Guessous F, Kofman A et al (2010) XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs 13:112–121

    PubMed  Google Scholar 

  102. Welsh JW, Mahadevan D, Ellsworth R et al (2009) The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol 4:69

    Article  PubMed  CAS  Google Scholar 

  103. Buchanan SG, Hendle J, Lee PS et al (2009) SGX523 is an exquisitely selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo. Mol Cancer Ther 8:3181–3190

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edurne Arriola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cañadas, I., Rojo, F., Arumí-Uría, M. et al. C-MET as a new therapeutic target for the development of novel anticancer drugs. Clin Transl Oncol 12, 253–260 (2010). https://doi.org/10.1007/s12094-010-0501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0501-0

Keywords

Navigation