Advertisement

Clinical and Translational Oncology

, Volume 11, Issue 9, pp 572–579 | Cite as

Inhibiting PI3K as a therapeutic strategy against cancer

  • Luis Paz-Ares
  • Carmen Blanco-Aparicio
  • Rocío García-Carbonero
  • Amancio CarneroEmail author
Educational Series Molecular Targets in Oncology

Abstract

Class I PI3K is composed of heterodimeric lipid kinases regulating essential cellular functions including proliferation, apoptosis and metabolism. Class I PI3K isoforms are commonly amplified in different cancer types and the PI3Kα catalytic subunit, PIK3CA, has been found mutated in a variable proportion of tumours of different origin. Furthermore, PI3K has been shown to mediate oncogenic signalling induced by several oncogenes such as HER2 or Ras. These facts suggest that PI3K might be a good target for anticancer drug discovery. Today, the rise of PI3K inhibitors and their first in vivo results have cleared much of the path for the development of PI3K inhibitors for anticancer therapy. Here we will review the PI3K pathway and the pharmacological results of PI3K inhibition.

Keywords

PI3K Cancer Therapy FOXO Inhibitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378PubMedCrossRefGoogle Scholar
  2. 2.
    Carnero A, Blanco-Aparicio C, Renner O et al (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198PubMedCrossRefGoogle Scholar
  3. 3.
    Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229PubMedCrossRefGoogle Scholar
  4. 4.
    Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24:7435–7442PubMedCrossRefGoogle Scholar
  5. 5.
    Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927PubMedCrossRefGoogle Scholar
  6. 6.
    Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177–182PubMedCrossRefGoogle Scholar
  7. 7.
    Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) Pten, more than the Akt pathway. Carcinogenesis 28:1379–1386PubMedCrossRefGoogle Scholar
  8. 8.
    Stokoe D (2001) Pten. Curr Biol 11:R502PubMedCrossRefGoogle Scholar
  9. 9.
    Dahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7:115–129PubMedCrossRefGoogle Scholar
  10. 10.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501PubMedCrossRefGoogle Scholar
  11. 11.
    Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedCrossRefGoogle Scholar
  12. 12.
    Dijkers PF, Birkenkamp KU, Lam EW et al (2002) FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 156:531–542PubMedCrossRefGoogle Scholar
  13. 13.
    Tran H, Brunet A, Griffith EC, Greenberg ME (2003) The many forks in FOXO’s road. Sci STKE 2003:RE5PubMedCrossRefGoogle Scholar
  14. 14.
    Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696PubMedCrossRefGoogle Scholar
  15. 15.
    Zhou BP, Hung MC (2002) Novel targets of Akt, p21 (Cipl/WAF1), and MDM2. Semin Oncol 29: 62–70PubMedGoogle Scholar
  16. 16.
    Liang J, Zubovitz J, Petrocelli T et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160PubMedCrossRefGoogle Scholar
  17. 17.
    Shin I, Yakes FM, Rojo F et al (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152PubMedCrossRefGoogle Scholar
  18. 18.
    Viglietto G, Motti ML, Bruni P et al (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144PubMedCrossRefGoogle Scholar
  19. 19.
    Lum JJ, Bui T, Gruber M et al (2007) The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21:1037–1049PubMedCrossRefGoogle Scholar
  20. 20.
    Majumder PK, Febbo PG, Bikoff R et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594–601PubMedCrossRefGoogle Scholar
  21. 21.
    Stiles B, Gilman V, Khanzenzon N et al (2002) Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 22:3842–3851PubMedCrossRefGoogle Scholar
  22. 22.
    Link W, Rosado A, Fominaya J et al (2005) Membrane localization of all class I PI 3-kinase isoforms suppresses c-Myc-induced apoptosis in Rat1 fibroblasts via Akt. J Cell Biochem 95:979–989PubMedCrossRefGoogle Scholar
  23. 23.
    Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730PubMedCrossRefGoogle Scholar
  24. 24.
    Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82PubMedCrossRefGoogle Scholar
  25. 25.
    Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66:3963–3966PubMedCrossRefGoogle Scholar
  26. 26.
    Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467PubMedCrossRefGoogle Scholar
  27. 27.
    Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664PubMedCrossRefGoogle Scholar
  28. 28.
    Bayascas JR, Leslie NR, Parsons R et al (2005) Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/−) mice. Curr Biol 15:1839–1846PubMedCrossRefGoogle Scholar
  29. 29.
    Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386PubMedCrossRefGoogle Scholar
  30. 30.
    Stiles B, Groszer M, Wang S et al (2004) PTEN-less means more. Dev Biol 273:175–184PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao JJ, Cheng H, Jia S et al (2006) The p110alpha isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc Natl Acad Sci U S A 103:16296–16300PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496PubMedCrossRefGoogle Scholar
  33. 33.
    Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779PubMedGoogle Scholar
  34. 34.
    Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689PubMedGoogle Scholar
  35. 35.
    Carnero A, Lacal JC (1995) Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study. Mol Cell Biol 15:1094–1101PubMedGoogle Scholar
  36. 36.
    Carnero A, Liyanage M, Stabel S, Lacal JC (1995) Evidence for different signalling pathways of PKC zeta and ras-p21 in Xenopus oocytes. Oncogene 11:1541–1547PubMedGoogle Scholar
  37. 37.
    Carnero A, Beach DH (2004) Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23:6006–6011PubMedCrossRefGoogle Scholar
  38. 38.
    Shields JM, Pruitt K, McFall A et al (2000) Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol 10:147–154PubMedCrossRefGoogle Scholar
  39. 39.
    Ulku AS, Der CJ (2003) Ras signaling, deregulation of gene expression and oncogenesis. Cancer Treat Res 115:189–208PubMedCrossRefGoogle Scholar
  40. 40.
    Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9:174–179PubMedCrossRefGoogle Scholar
  41. 41.
    Feig LA (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol 13:419–425PubMedCrossRefGoogle Scholar
  42. 42.
    Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–183PubMedCrossRefGoogle Scholar
  43. 43.
    McFarlin DR, Lindstrom MJ, Gould MN (2003) Affinity with Raf is sufficient for Ras to efficiently induce rat mammary carcinomas. Carcinogenesis 24:99–105PubMedCrossRefGoogle Scholar
  44. 44.
    McFarlin DR, Gould MN (2003) Rat mammary carcinogenesis induced by in situ expression of constitutive Raf kinase activity is prevented by tethering Raf to the plasma membrane. Carcinogenesis 24:1149–1153PubMedCrossRefGoogle Scholar
  45. 45.
    Lim KH, Counter CM (2005) Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8:381–392PubMedCrossRefGoogle Scholar
  46. 46.
    Gupta S, Ramjaun AR, Haiko P et al (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968PubMedCrossRefGoogle Scholar
  47. 47.
    Engelman JA, Chen L, Tan X et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356PubMedCrossRefGoogle Scholar
  48. 48.
    Yu K, Toral-Barza L, Shi C et al (2008) Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther 7:307–315PubMedGoogle Scholar
  49. 49.
    Parsons DW, Wang TL, Samuels Y et al (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436:792PubMedCrossRefGoogle Scholar
  50. 50.
    Liaw D, Marsh DJ, Li J et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67PubMedCrossRefGoogle Scholar
  51. 51.
    Marsh DJ, Kum JB, Lunetta KL et al (1999) PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 8:1461–1472PubMedCrossRefGoogle Scholar
  52. 52.
    Nelen MR, van Staveren WC, Peeters EA et al (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6:1383–1387PubMedCrossRefGoogle Scholar
  53. 53.
    Schrager CA, Schneider D, Gruener AC et al (1998) Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 29:47–53PubMedCrossRefGoogle Scholar
  54. 54.
    Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554PubMedCrossRefGoogle Scholar
  55. 55.
    Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102:802–807PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao JJ, Liu Z, Wang L et al (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A 102:18443–18448PubMedCrossRefGoogle Scholar
  57. 57.
    Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A 103:1475–1479PubMedCrossRefGoogle Scholar
  58. 58.
    Renner O, Fominaya J, Alonso S et al (2007) Mst1, RanBP2, and eIF4G are new markers for in vivo PI3K activation in murine and human prostate. Carcinogenesis 28:1418–1425PubMedCrossRefGoogle Scholar
  59. 59.
    Renner O, Blanco-Aparicio C, Grassow M et al (2008) Activation of phosphatidylinositol 3-kinase by membrane localization of p110 predisposes mammary glands to neoplastic transformation. Cancer Res 68:9643–9653PubMedCrossRefGoogle Scholar
  60. 60.
    Renner O, Blanco-Aparicio C, Carnero A (2008) Genetic modelling of the PTEN/AKT pathway in cancer research. Clin Transl Oncol 10:618–627PubMedCrossRefGoogle Scholar
  61. 61.
    Renner O, Blanco-Aparicio C, Grassow M et al (2008) Activation of phosphatidylinositol 3-kinase by membrane localization of p110alpha predisposes mammary glands to neoplastic transformation. Cancer Res 68:9643–9653PubMedCrossRefGoogle Scholar
  62. 62.
    Bachman KE, Argani P, Samuels Y et al (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3:772–775PubMedCrossRefGoogle Scholar
  63. 63.
    Campbell IG, Russell SE, Choong DY et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681PubMedCrossRefGoogle Scholar
  64. 64.
    Kirkegaard T, Witton CJ, McGlynn LM et al (2005) AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 207:139–146PubMedCrossRefGoogle Scholar
  65. 65.
    Xing D, Orsulic S (2005) A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc Natl Acad Sci U S A 102:6936–6941PubMedCrossRefGoogle Scholar
  66. 66.
    Nakayama K, Nakayama N, Kurman RJ et al (2006) Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 5:779–785PubMedGoogle Scholar
  67. 67.
    Asano T, Yao Y, Zhu J et al (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 23:8571–8580PubMedCrossRefGoogle Scholar
  68. 68.
    Okano J, Snyder L, Rustgi AK (2003) Genetic alterations in esophageal cancer. Methods Mol Biol 222:131–145PubMedGoogle Scholar
  69. 69.
    Garcia-Rostan G, Costa AM, Pereira-Castro I et al (2005) Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 65:10199–10207PubMedCrossRefGoogle Scholar
  70. 70.
    Broderick DK, Di C, Parrett TJ et al (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64:5048–5050PubMedCrossRefGoogle Scholar
  71. 71.
    Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510PubMedCrossRefGoogle Scholar
  72. 72.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  73. 73.
    Nagata Y, Lan KH, Zhou X et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127PubMedCrossRefGoogle Scholar
  74. 74.
    Fujita T, Doihara H, Kawasaki K et al (2006) PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J Cancer 94:247–252PubMedCrossRefGoogle Scholar
  75. 75.
    Berns K, Horlings HM, Hennessy BT et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402PubMedCrossRefGoogle Scholar
  76. 76.
    Gharbi SI, Zvelebil MJ, Shuttleworth SJ et al (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 404:15–21PubMedCrossRefGoogle Scholar
  77. 77.
    Garcia-Echeverria C, Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27:5511–5526PubMedCrossRefGoogle Scholar
  78. 78.
    Stauffer F, Holzer P, Garcia-Echeverria C (2005) Blocking the PI3K/PKB pathway in tumor cells. Curr Med Chem Anticancer Agents 5:449–462PubMedCrossRefGoogle Scholar
  79. 79.
    Garlich JR, De P, Dey N et al (2008) A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 68:206–215PubMedCrossRefGoogle Scholar
  80. 80.
    Chiorean EG, Mahadevan D, Harris WB et al (2009) Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. J Clin Oncol 27:15CrossRefGoogle Scholar
  81. 81.
    Zhu T, Gu J, Yu K et al (2006) Pegylated wortmannin and 17-hydroxywortmannin conjugates as phosphoinositide 3-kinase inhibitors active in human tumor xenograft models. J Med Chem 49:1373–1378PubMedCrossRefGoogle Scholar
  82. 82.
    Ihle NT, Williams R, Chow S et al (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3:763–772PubMedGoogle Scholar
  83. 83.
    Ihle NT, Powis G (2009) Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 8:1–9PubMedCrossRefGoogle Scholar
  84. 84.
    Carnero A (2009) Novel inhibitors of the PI3K family. Exp Opin Investig New Drugs 18:1–13CrossRefGoogle Scholar
  85. 85.
    Knight ZA, Shokat KM (2007) Chemically targeting the PI3K family. Biochem Soc Trans 35:245–249PubMedCrossRefGoogle Scholar
  86. 86.
    Maira SM, Stauffer F, Brueggen J et al (2008) Identification and characterization of NVPBEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863PubMedCrossRefGoogle Scholar
  87. 87.
    Folkes AJ, Ahmadi K, Alderton WK et al (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin -4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51:5522–5532PubMedCrossRefGoogle Scholar
  88. 88.
    Serra V, Markman B, Scaltriti M et al (2008) NVPBEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68:8022–8030PubMedCrossRefGoogle Scholar
  89. 89.
    Calvo E, Edelman G, Baselga J et al (2008) A phase 1 dose-escalation study of the safety, pharmacokinetics and pharmacodynamics of XL147, a novel PI3K inhibitor administered orally to patients with advanced solid tumors. EORTCNCI-AACR International Conference on Molecular Targets and Cancer Therapeutics, Geneva, SwitzerlandGoogle Scholar
  90. 90.
    Foster, PG (2007) Potentiating the antitumor effects of chemotherapy with the selective PI3K inhibitor XL147. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, C199Google Scholar
  91. 91.
    Shapiro G, Kwak E, Baselga J et al (2009) Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors. J Clin Oncol 27[15s]:3500Google Scholar
  92. 92.
    Laird D (2007) XL765 targets tumor growth, survival, and angiogenesis in preclinical models by dual inhibition of PI3K and mTOR. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, B250Google Scholar
  93. 93.
    Markman B, LoRusso PM, Patnaik A et al (2008) A phase 1 dose-escalation study of the safety, pharmacokinetics and pharmacodynamics of XL765, a novel inhibitor of PI3K and mTOR, administered orally to patients with solid tumors. EORTC-NCI-AACR International Conference on Molecular Targets and Cancer Therapeutics, Geneva, SwitzerlandGoogle Scholar
  94. 94.
    LoRusso P, Markman B, Tabernero J et al (2009) A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765, a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced solid tumors. J Clin Oncol 27[15s]:abstr 3502Google Scholar
  95. 95.
    Sarker D, Kristeleit R, Mazina KE et al (2009) A phase I study evaluating the pharmacokinetics (PK) and pharmacodynamics (PD) of the oral pan-phosphoinositide-3 kinase (PI3K) inhibitor GDC-0941. J Clin Oncol 27[15s]:3538Google Scholar
  96. 96.
    Wagner AJ, Von Hoff DH, LoRusso PM et al (2009) A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. J Clin Oncol 27[15s]abstr 3501Google Scholar
  97. 97.
    — (2009) A phase I/II study of BEZ235 in patients with advanced solid malignancies enriched by patients with advanced breast cancer. http://clinicaltrials.gov/ct2/show/NCT00620594
  98. 98.
    Billottet C, Grandage VL, Gale RE et al (2006) A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25:6648–6659PubMedCrossRefGoogle Scholar
  99. 99.
    Flinn IW, Byrd JC, Furman RR et al (2009) Preliminary evidence of clinical activity in a phase I study of CAL-101, a selective inhibitor of the p1108 isoform of phosphatidylinositol 3-kinase (P13K), in patients with select hematologic malignancies. J Clin Oncol 27[15s]:abstr 3543Google Scholar
  100. 100.
    Hu L, Hofmann J, Lu Y et al (2002) Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 62:1087–1092PubMedGoogle Scholar
  101. 101.
    Mabuchi S, Ohmichi M, Kimura A et al (2002) Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 277:33490–33500PubMedCrossRefGoogle Scholar
  102. 102.
    Nguyen DM, Chen GA, Reddy R et al (2004) Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J Thorac Cardiovasc Surg 127:365–375PubMedCrossRefGoogle Scholar
  103. 103.
    Blanco-Aparicio C, Pequeno B, Moneo V et al (2005) Inhibition of phosphatidylinositol-3-kinase synergizes with gemcitabine in low-passage tumor cell lines correlating with Bax translocation to the mitochondria. Anticancer Drugs 16:977–987PubMedCrossRefGoogle Scholar
  104. 104.
    Ng SSW, Tsao MS, Chow S, Hedley DW (2000) Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 60:5451–5455PubMedGoogle Scholar
  105. 105.
    Wang Q, Li N, Wang X et al (2002) Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3′-kinase inhibition in the KM20 human colon cancer cell line. Clin Cancer Res 8:1940–1947PubMedGoogle Scholar
  106. 106.
    Edwards E, Geng L, Tan J et al (2002) Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 62:4671–4677PubMedGoogle Scholar
  107. 107.
    Gupta AK, McKenna WG, Weber CN et al (2002) Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res 8:885–892PubMedGoogle Scholar
  108. 108.
    Tortora G, Gelardi T, Ciardiello F, Bianco R (2007) The rationale for the combination of selective EGFR inhibitors with cytotoxic drugs and radiotherapy. Int J Biol Markers 22:S47–52PubMedGoogle Scholar
  109. 109.
    She QB, Solit DB, Ye Q et al (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297PubMedCrossRefGoogle Scholar
  110. 110.
    Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–1167PubMedCrossRefGoogle Scholar
  111. 111.
    Ihle NT, Paine-Murrieta G, Berggren MI et al (2005) The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol Cancer Ther 4:1349–1357PubMedCrossRefGoogle Scholar
  112. 112.
    Yakes FM, Chinratanalab W, Ritter CA et al (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibodymediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141PubMedGoogle Scholar
  113. 113.
    Eichhorn PJ, Gili M, Scaltriti M et al (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68:9221–9230PubMedCrossRefGoogle Scholar
  114. 114.
    Rahmani M, Davis EM, Bauer C et al (2005) Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves downregulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217–35227PubMedCrossRefGoogle Scholar
  115. 115.
    Rahmani M, Reese E, Dai Y et al (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65:2422–2432PubMedCrossRefGoogle Scholar
  116. 116.
    Landis-Piwowar KR, Milacic V, Chen D et al (2006) The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 9:263–273wPubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2009

Authors and Affiliations

  • Luis Paz-Ares
    • 1
  • Carmen Blanco-Aparicio
    • 2
  • Rocío García-Carbonero
    • 1
  • Amancio Carnero
    • 3
    Email author
  1. 1.Medical OncologyHospital Universitario Virgen del RocíoSevillaSpain
  2. 2.Experimental Therapeutics ProgrammeSpanish National Cancer Research CentreMadridSpain
  3. 3.Instituto de Biomedicina de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations