Skip to main content

Advertisement

Log in

Phosphoproteomics and cancer research

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Protein phosphorylation plays key roles in the regulation of normal and cancer cells. It is a highly dynamic process. Protein kinases are the targets of several new cancer drugs and drug candidates. However, some of the main issues related to new drugs are how they function and the selection of those patients that will likely respond best to a particular treatment regime. There is an urgent need to understand and monitor kinase signalling pathways. Phosphoproteomics requires the enrichment of phosphorylated proteins or peptides from tissue or bodily fluids, and the application of technologies such as mass spectrometry (MS) to the identification and quantification of protein phosphorylation sites. As the field develops it will provide pharmacodynamic readouts of disease states and cellular drug responses in tumour samples. There have been a number of recent advances, but there are still technical hurdles and bioinformatics challenges that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yarbro JW (1992) Oncogenes and cancer suppressor genes. Semin Oncol Nurs 8:30

    Article  PubMed  CAS  Google Scholar 

  2. Martin KK, Pilkington GJ (1998) Nm23: an invasion suppressor gene in CNS tumours? Anticancer Res 18:919

    PubMed  CAS  Google Scholar 

  3. Senderowicz AM (2003) Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2:S84

    PubMed  CAS  Google Scholar 

  4. Ha TK, An JY, Youn HG et al (2007) Surgical outcome of synchronous second primary cancer in patients with gastric cancer. Yonsei Med J 48:981

    Article  PubMed  Google Scholar 

  5. Chong PK, Lee H, Kong JW et al (2008) Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 8:4370

    Article  PubMed  CAS  Google Scholar 

  6. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153

    Article  PubMed  CAS  Google Scholar 

  7. Sathornsumetee S, Reardon DA (2009) Targeting multiple kinases in glioblastoma multiforme. Exp Opin Investig Drugs 18:277

    Article  CAS  Google Scholar 

  8. Wrighton KH, Lin X, Yu PB, Feng XH (2009) TGFbeta can stimulate Smad1 phosphorylation independently of BMP receptors. J Biol Chem 19:8

    CAS  Google Scholar 

  9. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177

    Article  PubMed  CAS  Google Scholar 

  10. Forbes SA, Bhamra G, Bamford S et al (2008) The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10 11

  11. Malumbres M, Barbacid M (2007) Cell cycle kinases in cancer. Curr Opin Genet Dev 17:60

    Article  PubMed  CAS  Google Scholar 

  12. Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662

    Article  PubMed  CAS  Google Scholar 

  13. Reddy EP, Korapati A, Chaturvedi P, Rane S (2000) IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19:2532

    Article  PubMed  CAS  Google Scholar 

  14. Gaestel M, Mengel A, Bothe U, Asadullah K (2007) Protein kinases as small molecule inhibitor targets in inflammation. Curr Med Chem 14:2214

    Article  PubMed  CAS  Google Scholar 

  15. Giamas G, Stebbing J, Vorgias CE, Knippschild U (2007) Protein kinases as targets for cancer treatment. Pharmacogenomics 8:1005

    Article  PubMed  CAS  Google Scholar 

  16. Ralph SJ (2007) An update on malignant melanoma vaccine research: insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines. Am J Clin Dermatol 8:123

    Article  PubMed  Google Scholar 

  17. Bixby DL, Talpaz M (2008) Efficacy of various doses and schedules of second-generation tyrosine kinase inhibitors. Clin Lymphoma Myeloma 8[Suppl 3]:S95

    Article  PubMed  CAS  Google Scholar 

  18. Perez de Castro I, de Carcer G, Montoya G, Malumbres M (2008) Emerging cancer therapeutic opportunities by inhibiting mitotic kinases. Curr Opin Pharmacol 8:375

    Article  PubMed  CAS  Google Scholar 

  19. Traxler P, Bold G, Buchdunger E et al (2001) Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21:499

    Article  PubMed  CAS  Google Scholar 

  20. Mann M, Ong SE, Gronborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261

    Article  PubMed  CAS  Google Scholar 

  21. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255

    Article  PubMed  CAS  Google Scholar 

  22. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33

    Article  PubMed  Google Scholar 

  23. Delom F, Chevet E (2006) Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 4:15

    Article  PubMed  Google Scholar 

  24. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391

    Article  PubMed  CAS  Google Scholar 

  25. Bonilla L, Means G, Lee K, Patterson S (2008) The evolution of tools for protein phosphorylation site analysis: from discovery to clinical application. Biotechniques 44:671

    Article  PubMed  CAS  Google Scholar 

  26. Sopko R, Andrews BJ (2008) Linking the kinome and phosphorylome: a comprehensive review of approaches to find kinase targets. Mol Biosyst 4:920

    Article  PubMed  CAS  Google Scholar 

  27. Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33:537

    Article  PubMed  CAS  Google Scholar 

  28. Gronborg M, Kristiansen TZ, Stensballe A et al (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1:517

    Article  PubMed  CAS  Google Scholar 

  29. Zhang ZY (2005) Functional studies of protein tyrosine phosphatases with chemical approaches. Biochim Biophys Acta 1754:100

    PubMed  CAS  Google Scholar 

  30. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21:3635

    Article  PubMed  CAS  Google Scholar 

  31. Springer WR (1991) A method for quantifying radioactivity associated with protein in silver-stained polyacrylamide gels. Anal Biochem 195:172

    Article  PubMed  CAS  Google Scholar 

  32. Wyttenbach A, Tolkovsky AM (2006) Differential phosphoprotein labeling (DIPPL), a method for comparing live cell phosphoproteomes using simultaneous analysis of (33)P- and (32)P-labeled proteins. Mol Cell Proteomics 5:553

    PubMed  CAS  Google Scholar 

  33. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252

    Article  PubMed  CAS  Google Scholar 

  34. Blaukat A (2004) Identification of G-protein-coupled receptor phosphorylation sites by 2D phosphopeptide mapping. Methods Mol Biol 259:283

    PubMed  CAS  Google Scholar 

  35. Gafken PR, Lampe PD (2006) Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun Adhes 13:249

    Article  PubMed  CAS  Google Scholar 

  36. Zhang H, Zha X, Tan Y et al (2002) Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem 277:39379

    Article  PubMed  CAS  Google Scholar 

  37. Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94

    Article  PubMed  CAS  Google Scholar 

  38. Di Vizio D, Solomon KR, Freeman MR (2008) Cholesterol and cholesterol-rich membranes in prostate cancer: an update. Tumori 94:633

    PubMed  Google Scholar 

  39. Dietz A, Boehm A, Mozet C et al (2008) Current aspects of targeted therapy in head and neck tumors. Eur Arch Otorhinolaryngol 265[Suppl 1]:S3

    Article  PubMed  Google Scholar 

  40. Huang F, Gu H (2008) Negative regulation of lymphocyte development and function by the Cbl family of proteins. Immunol Rev 224:229

    Article  PubMed  CAS  Google Scholar 

  41. Shah NP (2008) Advanced CML: therapeutic options for patients in accelerated and blast phases. J Natl Compr Canc Netw 6[Suppl 2]:S31

    PubMed  CAS  Google Scholar 

  42. Steen H, Kuster B, Mann M (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782

    Article  PubMed  CAS  Google Scholar 

  43. Ballif BA, Carey GR, Sunyaev SR, Gygi SP (2008) Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7:311

    Article  PubMed  CAS  Google Scholar 

  44. Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301

    Article  PubMed  CAS  Google Scholar 

  45. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250

    Article  PubMed  CAS  Google Scholar 

  46. Neville DC, Rozanas CR, Price EM et al (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6:2436

    Article  PubMed  CAS  Google Scholar 

  47. Figeys D, Gygi SP, McKinnon G, Aebersold R (1998) An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem 70:3728

    Article  PubMed  CAS  Google Scholar 

  48. Li S, Dass C (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 270:9

    Article  PubMed  CAS  Google Scholar 

  49. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883

    Article  PubMed  CAS  Google Scholar 

  50. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935

    Article  PubMed  CAS  Google Scholar 

  51. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234

    Article  PubMed  Google Scholar 

  52. Connor PA, Dobson KD, McQuillan J (1999) Infrared Spectroscopy of the TiO2/Aqueous Solution Interface. Langmuir 15:2402

    Article  CAS  Google Scholar 

  53. Connor PA, McQuillan A (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15:2916

    Article  CAS  Google Scholar 

  54. Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935

    Article  PubMed  CAS  Google Scholar 

  55. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873

    Article  PubMed  CAS  Google Scholar 

  56. Thingholm TE, Larsen MR (2009) The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests. Methods Mol Biol 527:57

    Article  PubMed  CAS  Google Scholar 

  57. Thingholm TE, Jensen ON, Larsen MR (2009) Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol Biol 527:67

    Article  PubMed  CAS  Google Scholar 

  58. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661

    PubMed  CAS  Google Scholar 

  59. Kweon HK, Hakansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743

    Article  PubMed  CAS  Google Scholar 

  60. Zhou H, Tian R, Ye M et al (2007) Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 28:2201

    Article  PubMed  CAS  Google Scholar 

  61. Peng J, Elias JE, Thoreen CC et al (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43

    Article  PubMed  CAS  Google Scholar 

  62. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310

    Article  PubMed  CAS  Google Scholar 

  63. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630

    Article  PubMed  Google Scholar 

  64. Beausoleil SA, Jedrychowski M, Schwartz D et al (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130

    Article  PubMed  CAS  Google Scholar 

  65. Zhang X, Ye J, Jensen ON, Roepstorff P (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6:2032

    Article  PubMed  CAS  Google Scholar 

  66. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850

    Article  PubMed  CAS  Google Scholar 

  67. Wilm M, Shevchenko A, Houthaeve T et al (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466

    Article  PubMed  CAS  Google Scholar 

  68. Gobom J, Nordhoff E, Mirgorodskaya E et al (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105

    Article  PubMed  CAS  Google Scholar 

  69. Larsen MR, Graham ME, Robinson PJ, Roepstorff P (2004) Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly phosphorylated dynamin I and dynamin III. Mol Cell Proteomics 3:456

    Article  PubMed  CAS  Google Scholar 

  70. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299

    Article  PubMed  CAS  Google Scholar 

  71. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64

    Article  PubMed  CAS  Google Scholar 

  72. Shou W, Verma R, Annan RS et al (2002) Mapping phosphorylation sites in proteins by mass spectrometry. Methods Enzymol 351:279

    Article  PubMed  CAS  Google Scholar 

  73. Carr SA, Annan RS, Huddleston MJ (2005) Mapping posttranslational modifications of proteins by MS-based selective detection: application to phosphoproteomics. Methods Enzymol 405:82

    Article  PubMed  CAS  Google Scholar 

  74. Dunn JD, Reid GE, Bruening ML (2009) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev [Epub ahead of print]

  75. Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24:201

    Article  PubMed  CAS  Google Scholar 

  76. Wu SL, Huhmer AF, Hao Z, Karger BL (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6:4230

    Article  PubMed  CAS  Google Scholar 

  77. Steen H, Jebanathirajah JA, Springer M, Kirschner MW (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci U S A 102:3948

    Article  PubMed  CAS  Google Scholar 

  78. Latterich M, Abramovitz M, Leyland-Jones B (2008) Proteomics: new technologies and clinical applications. Eur J Cancer 44:2737

    Article  PubMed  CAS  Google Scholar 

  79. Pan S, Aebersold R, Chen R et al (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787

    Article  PubMed  CAS  Google Scholar 

  80. Tedford NC, Hall AB, Graham JR et al (2009) Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Proteomics 9:1469

    Article  PubMed  CAS  Google Scholar 

  81. Cox DM, Zhong F, Du M et al (2005) Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J Biomol Tech 16:83

    PubMed  Google Scholar 

  82. Williamson BL, Marchese J, Morrice NA (2006) Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 5:337

    PubMed  CAS  Google Scholar 

  83. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104:5860

    Article  PubMed  CAS  Google Scholar 

  84. Zhang Y, Wolf-Yadlin A, White FM (2007) Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks. Methods Mol Biol 359:203

    Article  PubMed  CAS  Google Scholar 

  85. Steen JA, Steen H, Georgi A et al (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proc Natl Acad Sci U S A 105:6069

    Article  PubMed  CAS  Google Scholar 

  86. Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240

    Article  PubMed  CAS  Google Scholar 

  87. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635

    Article  PubMed  CAS  Google Scholar 

  88. Wolf-Yadlin A, Kumar N, Zhang Y et al (2006) Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol 2:54

    Article  PubMed  Google Scholar 

  89. Kumar C, Mann M (2009) Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett

  90. Nichols AM, White FM (2009) Manual validation of peptide sequence and sites of tyrosine phosphorylation from MS/MS spectra. Methods Mol Biol 492:143

    Article  PubMed  CAS  Google Scholar 

  91. Schulze WX, Mann M (2004) A novel proteomic screen for peptide-protein interactions. J Biol Chem 279:10756

    Article  PubMed  CAS  Google Scholar 

  92. Matthiesen R, Trelle MB, Hojrup P et al (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338

    Article  PubMed  CAS  Google Scholar 

  93. Gnad F, Ren S, Cox J et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250

    Article  PubMed  Google Scholar 

  94. Ingrell CR, Matthiesen R, Jensen ON (2007) Sequence handling by sequence analysis toolbox v1.0. Methods Mol Biol 367:153

    PubMed  CAS  Google Scholar 

  95. Ingrell CR, Miller ML, Jensen ON, Blom N (2007) NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23:895

    Article  PubMed  CAS  Google Scholar 

  96. Matthiesen R (2007) Virtual Expert Mass Spectrometrist v3.0: an integrated tool for proteome analysis. Methods Mol Biol 367:121

    PubMed  CAS  Google Scholar 

  97. Matthiesen R, Jensen ON (2008) Analysis of mass spectrometry data in proteomics. Methods Mol Biol 453:105

    Article  PubMed  CAS  Google Scholar 

  98. Huang PH, White FM (2008) Phosphoproteomics: unraveling the signaling web. Mol Cell 31:777

    Article  PubMed  CAS  Google Scholar 

  99. de la Fuente van Bentem S, Mentzen WI, de la Fuente A, Hirt H (2008) Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics 8:4453

    Article  PubMed  Google Scholar 

  100. Steen H, Jebanathirajah JA, Rush J et al (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics 5:172WW

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Ashman.

Additional information

Supported by an unrestricted educational grant from Merck Serono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashman, K., López Villar, E. Phosphoproteomics and cancer research. Clin Transl Oncol 11, 356–362 (2009). https://doi.org/10.1007/s12094-009-0369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0369-z

Keywords

Navigation