Skip to main content

Advertisement

Log in

Genetic alterations in chronic lymphocytic leukaemia

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Chronic lymphocytic leukaemia (CLL), the commonest form of leukaemia in adults in Western countries, is a genetically heterogeneous disease. The most frequent genetic alterations are deletions in 13q14, 17p13 (TP53) and 11q22–q23 (ATM), and trisomy of chromosome 12. Furthermore, additional alterations have been described. The most relevant techniques used for detection of genetic alterations in CLL include comparative genomic hybridisation (CGH) and fluorescence in situ hybridisation (FISH). Recently, PCR-based techniques, such as multiplex ligation-dependent probe amplification (MLPA), have been used to detect genetic alterations in CLL. This review summarises the genetic alterations described in CLL and the techniques used for their detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dighiero G, Hamblin TJ (2008) Chronic lymphocytic leukaemia. Lancet 371:1017–1029

    Article  PubMed  CAS  Google Scholar 

  2. Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916

    Article  PubMed  CAS  Google Scholar 

  3. Seiler T, Dohner H, Stilgenbauer S (2006) Risk stratification in chronic lymphocytic leukemia. Semin Oncol 33:186–194

    Article  PubMed  CAS  Google Scholar 

  4. Juliusson G, Oscier DG, Fitchett M et al (1990) Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 323:720–724

    PubMed  CAS  Google Scholar 

  5. Stilgenbauer S, Bullinger L, Lichter P et al (2002) Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia 16:993–1007

    Article  PubMed  CAS  Google Scholar 

  6. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949

    Article  PubMed  CAS  Google Scholar 

  7. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  8. Neilson JR, Auer R, White D et al (1997) Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia 11:1929–1932

    Article  PubMed  CAS  Google Scholar 

  9. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  10. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  11. Stankovic T, Weber P, Stewart G et al (1999) Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353:26–29

    Article  PubMed  CAS  Google Scholar 

  12. Bullrich F, Rasio D, Kitada S et al (1999) ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 59:24–27

    PubMed  CAS  Google Scholar 

  13. Schaffner C, Stilgenbauer S, Rappold GA et al (1999) Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94:748–753

    PubMed  CAS  Google Scholar 

  14. Pettitt AR, Sherrington PD, Stewart G et al (2001) p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 98:814–822

    Article  PubMed  CAS  Google Scholar 

  15. Coll-Mulet L, Iglesias-Serret D, Santidrian AF et al (2006) MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107:4109–4114

    Article  PubMed  CAS  Google Scholar 

  16. Austen B, Powell JE, Alvi A et al (2005) Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 106:3175–3182

    Article  PubMed  CAS  Google Scholar 

  17. Austen B, Skowronska A, Baker C et al (2007) Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25:5448–5457

    Article  PubMed  CAS  Google Scholar 

  18. Sturm I, Bosanquet AG, Hermann S et al (2003) Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ 10:477–484

    Article  PubMed  CAS  Google Scholar 

  19. el Rouby S, Thomas A, Costin D et al (1993) p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82:3452–3459

    PubMed  Google Scholar 

  20. Gaidano G, Ballerini P, Gong JZ et al (1991) p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 88:5413–5417

    Article  PubMed  CAS  Google Scholar 

  21. Wattel E, Preudhomme C, Hecquet B et al (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157

    PubMed  CAS  Google Scholar 

  22. Dohner H, Fischer K, Bentz M et al (1995) p53 gene deletion predicts for poor survival and nonresponse to therapy with purine analogs in chronic B-cell leukemias. Blood 85:1580–1589

    PubMed  CAS  Google Scholar 

  23. Lens D, Dyer MJ, Garcia-Marco JM et al (1997) p53 abnormalities in CLL are associated with excess of prolymphocytes and poor prognosis. Br J Haematol 99:848–857

    Article  PubMed  CAS  Google Scholar 

  24. Silber R, Degar B, Costin D et al (1994) Chemosensitivity of lymphocytes from patients with B-cell chronic lymphocytic leukemia to chlorambucil, fludarabine, and camptothecin analogs. Blood 84:3440–3446

    PubMed  CAS  Google Scholar 

  25. Cordone I, Masi S, Mauro FR et al (1998) p53 expression in B-cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood 91:4342–4349

    PubMed  CAS  Google Scholar 

  26. Thornton PD, Gruszka-Westwood AM, Hamoudi RA et al (2004) Characterisation of TP53 abnormalities in chronic lymphocytic leukaemia. Hematol J 5:47–54

    Article  PubMed  CAS  Google Scholar 

  27. Rossi D, Cerri M, Deambrogi C et al (2009) The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 15:995–1004

    Article  PubMed  CAS  Google Scholar 

  28. Tsimberidou AM, Keating MJ (2006) Richter’s transformation in chronic lymphocytic leukemia. Semin Oncol 33:250–256

    Article  PubMed  Google Scholar 

  29. Matutes E, Oscier D, Garcia-Marco J et al (1996) Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol 92:382–388

    Article  PubMed  CAS  Google Scholar 

  30. Kienle DL, Korz C, Hosch B et al (2005) Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation, and apoptosis-associated genes. J Clin Oncol 23:3780–3792

    Article  PubMed  CAS  Google Scholar 

  31. Tsujimoto Y, Yunis J, Onorato-Showe L et al (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406

    Article  PubMed  CAS  Google Scholar 

  32. Cuneo A, Rigolin GM, Bigoni R et al (2004) Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis. Leukemia 18:476–483

    Article  PubMed  CAS  Google Scholar 

  33. Merup M, Moreno TC, Heyman M et al (1998) 6q deletions in acute lymphoblastic leukemia and non-Hodgkin’s lymphomas. Blood 91:3397–3400

    PubMed  CAS  Google Scholar 

  34. Rudenko HC, Else M, Dearden C et al (2008) Characterising the TP53-deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array-based comparative genomic hybridisation. Leuk Lymphoma 49:1879–1886

    Article  PubMed  CAS  Google Scholar 

  35. Huh YO, Lin KI, Vega F et al (2008) MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol 142:36–44

    Article  PubMed  Google Scholar 

  36. Rimokh R, Rouault JP, Wahbi K et al (1991) A chromosome 12 coding region is juxtaposed to the MYC protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 3:24–36

    Article  PubMed  CAS  Google Scholar 

  37. Wang TY, Samples DM, Dabdoub R et al (1991) c-myc and K-ras-2 oncogenes in B-cell chronic lymphocytic leukemia with del(12)(p13). Cancer Genet Cytogenet 51:125–130

    Article  PubMed  CAS  Google Scholar 

  38. Coll-Mulet L, Santidrian AF, Cosialls AM et al (2008) Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol 142:793–801

    Article  PubMed  Google Scholar 

  39. Vallat L, Magdelenat H, Merle-Beral H et al (2003) The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101:4598–4606

    Article  PubMed  CAS  Google Scholar 

  40. Moshynska O, Sankaran K, Pahwa P et al (2004) Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst 96:673–682

    Article  PubMed  CAS  Google Scholar 

  41. Iglesias-Serret D, Coll-Mulet L, Santidrian AF et al (2005) Re: Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst 97:1090–1091; author reply 1093–1095

    PubMed  CAS  Google Scholar 

  42. Coenen S, Pickering B, Potter KN et al (2005) The relevance of sequence insertions in the Mcl-1 promoter in chronic lymphocytic leukemia and in normal cells. Haematologica 90:1285–1286

    PubMed  CAS  Google Scholar 

  43. Tobin G, Skogsberg A, Thunberg U et al (2005) Mcl-1 gene promoter insertions do not correlate with disease outcome, stage or VH gene mutation status in chronic lymphocytic leukaemia. Leukemia 19:871–873

    Article  PubMed  CAS  Google Scholar 

  44. Raval A, Tanner SM, Byrd JC et al (2007) Down-regulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129:879–890

    Article  PubMed  CAS  Google Scholar 

  45. Raval A, Byrd JC, Plass C (2006) Epigenetics in chronic lymphocytic leukemia. Semin Oncol 33:157–166

    Article  PubMed  CAS  Google Scholar 

  46. Gahrton G, Robert KH, Friberg K et al (1980) Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B0cell-mitogen stimulation. Blood 56:640–647

    PubMed  CAS  Google Scholar 

  47. Hurley JN, Fu SM, Kunkel HG et al (1980) Chromosome abnormalities of leukaemic B lymphocytes in chronic lymphocytic leukaemia. Nature 283:76–78

    Article  PubMed  CAS  Google Scholar 

  48. Bentz M, Huck K, du Manoir S et al (1995) Comparative genomic hybridization in chronic B-cell leukemias shows a high incidence of chromosomal gains and losses. Blood 85:3610–3618

    PubMed  CAS  Google Scholar 

  49. Odero MD, Soto JL, Matutes E et al (2001) Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL. Cancer Genet Cytogenet 130:8–13

    Article  PubMed  CAS  Google Scholar 

  50. Schwaenen C, Nessling M, Wessendorf S et al (2004) Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci U S A 101:1039–1044

    Article  PubMed  CAS  Google Scholar 

  51. Sargent R, Jones D, Abruzzo LV et al (2009) Customized oligonucleotide array-based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia. J Mol Diagn 11:25–34

    Article  PubMed  CAS  Google Scholar 

  52. Novak U, Oppliger Leibundgut E, Hager J et al (2002) A high-resolution allelotype of B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:1787–1794

    PubMed  CAS  Google Scholar 

  53. Dicker F, Schnittger S, Haferlach T et al (2006) Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 108:3152–3160

    Article  PubMed  CAS  Google Scholar 

  54. Mayr C, Speicher MR, Kofler DM et al (2006) Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107:742–751

    Article  PubMed  CAS  Google Scholar 

  55. Grubor V, Krasnitz A, Troge JE et al (2009) Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA). Blood 113:1294–1303

    Article  PubMed  CAS  Google Scholar 

  56. Dohner H, Stilgenbauer S, Dohner K et al (1999) Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med 77:266–281

    Article  PubMed  CAS  Google Scholar 

  57. Shanafelt TD, Jelinek D, Tschumper R et al (2006) Cytogenetic abnormalities can change during the course of the disease process in chronic lymphocytic leukemia. J Clin Oncol 24:3218–3219; author reply 3219–3220

    Article  PubMed  Google Scholar 

  58. Buijs A, Krijtenburg PJ, Meijer E (2006) Detection of risk-identifying chromosomal abnormalities and genomic profiling by multiplex ligation-dependent probe amplification in chronic lymphocytic leukemia. Haematologica 91:1434–1435

    PubMed  CAS  Google Scholar 

  59. Bastard C, Raux G, Fruchart C et al (2007) Comparison of a quantitative PCR method with FISH for the assessment of the four aneuploidies commonly evaluated in CLL patients. Leukemia 21:1460–1463

    Article  PubMed  CAS  Google Scholar 

  60. Sellner LN, Taylor GR (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat 23:413–419

    Article  PubMed  CAS  Google Scholar 

  61. Di Bernardo MC, Crowther-Swanepoel D, Broderick P et al (2008) A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet 40:1204–1210

    Article  PubMed  CAS  Google Scholar 

  62. Enjuanes A, Benavente Y, Bosch F et al (2008) Genetic variants in apoptosis and immunoregulation-related genes are associated with risk of chronic lymphocytic leukemia. Cancer Res 68:10178–10101

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coll-Mulet, L., Gil, J. Genetic alterations in chronic lymphocytic leukaemia. Clin Transl Oncol 11, 194–198 (2009). https://doi.org/10.1007/s12094-009-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0340-z

Keywords

Navigation