Skip to main content

Advertisement

Log in

Genetic modelling of the PTEN/AKT pathway in cancer research

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The focus on targeted therapies has been fuelled by extensive research on molecular pathways and their role in tumorigenesis. Novel models of human cancer have been created to evaluate the role of specific genes in the different stages of cancer. Currently, mouse modelling of human cancer is possible through the expression of oncogenes, specific genetic mutations or the inactivation of tumour suppressor genes, and these models have begun to provide us with an understanding of the molecular pathways involved in tumour initiation and progression at the physiological level. Additionally, these mouse models serve as an excellent system to evaluate the efficacy of currently developed molecular targeted therapies and identify new potential targets for future therapies. The PTEN/AKT pathway is implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Deregulation of the PTEN/AKT pathway is a common event in human cancer. Despite the abundant literature, the physiological role of each element of the pathway has begun to be uncovered thanks to genetically engineered mice. This review will summarise some of the key animal models which have helped us to understand this signalling network and its contribution to tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  2. Backer JM (2000) Phosphoinositide 3-kinases and the regulation of vesicular trafficking. Mol Cell Biol Res Commun 3:193–204

    Article  PubMed  CAS  Google Scholar 

  3. Vanhaesebroeck B, Leevers SJ, Ahmadi K et al (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  5. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  PubMed  CAS  Google Scholar 

  6. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  PubMed  CAS  Google Scholar 

  7. Foukas LC, Claret M, Pearce W et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370

    Article  PubMed  CAS  Google Scholar 

  8. Suire S, Condliffe AM, Ferguson GJ et al (2006) Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol 8:1303–1309

    Article  PubMed  CAS  Google Scholar 

  9. Carnero A, Blanco-Aparicio C, Renner O et al (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198

    Article  PubMed  CAS  Google Scholar 

  10. Vanhaesebroeck B, Ali K, Bilancio A et al (2005) Signalling by PI3K isoforms: insights from genetargeted mice. Trends Biochem Sci 30:194–204

    Article  PubMed  CAS  Google Scholar 

  11. Klippel A, Reinhard C, Kavanaugh WM et al (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16:4117–4127

    PubMed  CAS  Google Scholar 

  12. Otsu M, Hiles I, Gout I et al (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65:91–104

    Article  PubMed  CAS  Google Scholar 

  13. Hu P, Margolis B, Skolnik EY et al (1992) Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 12:981–990

    PubMed  CAS  Google Scholar 

  14. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  15. Chang HW, Aoki M, Fruman D et al (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276:1848–1850

    Article  PubMed  CAS  Google Scholar 

  16. Aoki M, Batista O, Bellacosa A et al (1998) The akt kinase: molecular determinants of oncogenicity. Proc Natl Acad Sci U S A 95:14950–14955

    Article  PubMed  CAS  Google Scholar 

  17. Zhao JJ, Gjoerup OV, Subramanian RR et al (2003) Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3:483–495

    Article  PubMed  CAS  Google Scholar 

  18. Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3:1221–1224

    PubMed  CAS  Google Scholar 

  19. Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  PubMed  CAS  Google Scholar 

  20. Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A 105:2652–2657

    Article  PubMed  CAS  Google Scholar 

  21. Shayesteh L, Lu Y, Kuo WL et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    Article  PubMed  CAS  Google Scholar 

  22. Sun M, Paciga JE, Feldman RI et al (2001) Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61: 5985–5991

    PubMed  CAS  Google Scholar 

  23. Moscatello DK, Holgado-Madruga M, Emlet DR et al (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273:200–206

    Article  PubMed  CAS  Google Scholar 

  24. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    Article  PubMed  CAS  Google Scholar 

  25. Gymnopoulos M, Elsliger MA, Vogt PK (2007) Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci U S A 104: 5569–5574

    Article  PubMed  CAS  Google Scholar 

  26. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102:802–807

    Article  PubMed  CAS  Google Scholar 

  27. Zhao JJ, Liu Z, Wang L et al (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci U S A 102:18443–18448

    Article  PubMed  CAS  Google Scholar 

  28. Isakoff SJ, Engelman JA, Irie HY et al (2005) Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 65:10992–11000

    Article  PubMed  CAS  Google Scholar 

  29. Ikenoue T, Kanai F, Hikiba Y et al (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567

    Article  PubMed  CAS  Google Scholar 

  30. Knight ZA, Gonzalez B, Feldman ME et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747

    Article  PubMed  CAS  Google Scholar 

  31. Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A 103:1475–1479

    Article  PubMed  CAS  Google Scholar 

  32. Benistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alphap110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19:5083–5090

    Article  PubMed  CAS  Google Scholar 

  33. Hickey FB, Cotter TG (2006) BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 281:2441–2450

    Article  PubMed  CAS  Google Scholar 

  34. Skorski T, Bellacosa A, Nieborowska-Skorska M et al (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Aktdependent pathway. EMBO J 16:6151–6161

    Article  PubMed  CAS  Google Scholar 

  35. Mizoguchi M, Nutt CL, Mohapatra G, Louis DN (2004) Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol 14:372–377

    Article  PubMed  CAS  Google Scholar 

  36. Sujobert P, Bardet V, Cornillet-Lefebvre P et al (2005) Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106:1063–1066

    Article  PubMed  CAS  Google Scholar 

  37. Ali IU, Schriml LM, Dean M (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91:1922–1932

    Article  PubMed  CAS  Google Scholar 

  38. Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    Article  PubMed  CAS  Google Scholar 

  39. Parsons DW, Wang TL, Samuels Y et al (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436:792

    Article  PubMed  CAS  Google Scholar 

  40. Liaw D, Marsh DJ, Li J et al (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67

    Article  PubMed  CAS  Google Scholar 

  41. Marsh DJ, Kum JB, Lunetta KL et al (1999) PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 8:1461–1472

    Article  PubMed  CAS  Google Scholar 

  42. Nelen MR, van Staveren WC, Peeters EA et al (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6:1383–1387

    Article  PubMed  CAS  Google Scholar 

  43. Schrager CA, Schneider D, Gruener AC et al (1998) Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 29:47–53

    Article  PubMed  CAS  Google Scholar 

  44. Parsons R (2004) Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 15: 171–176

    Article  PubMed  CAS  Google Scholar 

  45. Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229

    Article  PubMed  CAS  Google Scholar 

  46. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  47. Kops GJ, de Ruiter ND, De Vries-Smits AM et al (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634

    Article  PubMed  CAS  Google Scholar 

  48. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  49. Link W, Rosado A, Fominaya J et al (2005) Membrane localization of all class I PI 3-kinase isoforms suppresses c-Myc-induced apoptosis in Rat1 fibroblasts via Akt. J Cell Biochem 95:979–989

    Article  PubMed  CAS  Google Scholar 

  50. Podsypanina K, Lee RT, Politis C et al (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci U S A 98:10320–10325

    Article  PubMed  CAS  Google Scholar 

  51. Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82

    Article  PubMed  CAS  Google Scholar 

  52. Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66:3963–3966

    Article  PubMed  CAS  Google Scholar 

  53. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467

    Article  PubMed  CAS  Google Scholar 

  54. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  PubMed  CAS  Google Scholar 

  55. Stiles B, Gilman V, Khanzenzon N et al (2002) Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 22:3842–3851

    Article  PubMed  CAS  Google Scholar 

  56. Chen ML, Xu PZ, Peng XD et al (2006) The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev 20:1569–1574

    Article  PubMed  CAS  Google Scholar 

  57. Carpten JD, Faber AL, Horn C et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444

    Article  PubMed  CAS  Google Scholar 

  58. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic dev elopment and tumour suppression. Nat Genet 19:348–355

    Article  PubMed  Google Scholar 

  59. Suzuki A, de la Pompa JL, Stambolic V et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8:1169–1178

    Article  PubMed  CAS  Google Scholar 

  60. Podsypanina K, Ellenson LH, Nemes A et al (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96:1563–1568

    Article  PubMed  CAS  Google Scholar 

  61. Stambolic V, Tsao MS, Macpherson D et al (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res 60:3605–3611

    PubMed  CAS  Google Scholar 

  62. Di Cristofano A, De Acetis M, Koff A et al (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27:222–224

    Article  PubMed  CAS  Google Scholar 

  63. Li Y, Podsypanina K, Liu X et al (2001) Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Mol Biol 2:2

    Article  PubMed  CAS  Google Scholar 

  64. Freeman DJ, Li AG, Wei G et al (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms. Cancer Cell 3:117–130

    Article  PubMed  CAS  Google Scholar 

  65. Hernando E, Charytonowicz E, Dudas ME et al (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13:748–753

    Article  PubMed  CAS  Google Scholar 

  66. Kwon CH, Zhao D, Chen J et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294

    Article  PubMed  CAS  Google Scholar 

  67. Yao D, Alexander CL, Quinn JA et al (2006) PTEN loss promotes rasHa-mediated papillomatogenesis via dual up-regulation of AKT activity and cell cycle deregulation but malignant conversion proceeds via PTEN-associated pathways. Cancer Res 66:1302–1312

    Article  PubMed  CAS  Google Scholar 

  68. Iwanaga K, Yang Y, Raso MG et al (2008) Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res 68:1119–1127

    Article  PubMed  CAS  Google Scholar 

  69. Kishimoto H, Hamada K, Saunders M et al (2003) Physiological functions of Pten in mouse tissues. Cell Struct Funct 28:11–21

    Article  PubMed  CAS  Google Scholar 

  70. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541

    Article  PubMed  CAS  Google Scholar 

  71. Carver BS, Pandolfi PP (2006) Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res 12:5305–5311

    Article  PubMed  CAS  Google Scholar 

  72. Wang S, Gao J, Lei Q et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    Article  PubMed  CAS  Google Scholar 

  73. Freeman D, Lesche R, Kertesz N et al (2006) Genetic background controls tumor development in PTEN-deficient mice. Cancer Res 66:6492–6496

    Article  PubMed  CAS  Google Scholar 

  74. Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  75. Ruiz L, Traskine M, Ferrer I et al (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS ONE 3:e3230

    Article  PubMed  CAS  Google Scholar 

  76. Majumder PK, Grisanzio C, O’Connell F et al (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14:146–155

    Article  PubMed  CAS  Google Scholar 

  77. Li G, Robinson GW, Lesche R et al (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129:4159–4170

    PubMed  CAS  Google Scholar 

  78. Stiles B, Groszer M, Wang S et al (2004) PTEN-less means more. Dev Biol 273:175–184

    Article  PubMed  CAS  Google Scholar 

  79. Weng LP, Brown JL, Eng C (2001) PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet 10:599–604

    Article  PubMed  CAS  Google Scholar 

  80. Radu A, Neubauer V, Akagi T et al (2003) PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23:6139–6149

    Article  PubMed  CAS  Google Scholar 

  81. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98:11598–11603

    Article  PubMed  CAS  Google Scholar 

  82. Gottlieb TM, Leal JF, Seger R et al (2002) Crosstalk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21:1299–1303

    Article  PubMed  CAS  Google Scholar 

  83. Weng L, Brown J, Eng C (2001) PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and-independent pathways. Hum Mol Genet 10:237–242

    Article  PubMed  CAS  Google Scholar 

  84. Oren M, Damalas A, Gottlieb T et al (2002) Regulation of p53: intricate loops and delicate balances. Biochem Pharmacol 64:865–871

    Article  PubMed  CAS  Google Scholar 

  85. Gu J, Tamura M, Yamada KM (1998) Tumor suppressor PTEN inhibits integrin-and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 143:1375–1383

    Article  PubMed  CAS  Google Scholar 

  86. Gu J, Tamura M, Pankov R et al (1999) Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146:389–403

    Article  PubMed  CAS  Google Scholar 

  87. Tamura M, Gu J, Danen EH et al (1999) PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274:20693–20703

    Article  PubMed  CAS  Google Scholar 

  88. Ali IU (2000) Gatekeeper for endometrium: the PTEN tumor suppressor gene. J Natl Cancer Inst 92:861–863

    Article  PubMed  CAS  Google Scholar 

  89. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  90. Groszer M, Erickson R, Scripture-Adams DD et al (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci U S A 103:111–116

    Article  PubMed  CAS  Google Scholar 

  91. Groszer M, Erickson R, Scripture-Adams DD et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189

    Article  PubMed  CAS  Google Scholar 

  92. He XC, Yin T, Grindley JC et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39:189–198

    Article  PubMed  CAS  Google Scholar 

  93. Guo W, Lasky JL, Chang CJ et al (2008) Multigenetic events collaboratively contribute to Ptennull leukaemia stem-cell formation. Nature 453:529–533

    Article  PubMed  CAS  Google Scholar 

  94. Bi L, Okabe I, Bernard DJ et al (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968

    Article  PubMed  CAS  Google Scholar 

  95. Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172

    PubMed  CAS  Google Scholar 

  96. Brachmann SM, Ueki K, Engelman JA et al (2005) Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 25:1596–1607

    Article  PubMed  CAS  Google Scholar 

  97. Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  98. Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR (2000) Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol Cell Biol 20:8035–8046

    Article  PubMed  CAS  Google Scholar 

  99. Graupera M, Guillermet-Guibert J, Foukas LC et al (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666

    Article  PubMed  CAS  Google Scholar 

  100. Sasaki T, Irie-Sasaki J, Jones RG et al (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046

    Article  PubMed  CAS  Google Scholar 

  101. Jou ST, Carpino N, Takahashi Y et al (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22:8580–8591

    Article  PubMed  CAS  Google Scholar 

  102. Shioi T, Kang PM, Douglas PS et al (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19:2537–2548

    Article  PubMed  CAS  Google Scholar 

  103. Jimenez C, Jones DR, Rodriguez-Viciana P et al (1998) Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17:743–753

    Article  PubMed  CAS  Google Scholar 

  104. Renner O, Fominaya J, Alonso S et al (2007) Mst1, RanBP2 and eIF4G are new markers for in vivo PI3K activation in murine and human prostate. Carcinogenesis 28:1418–1425

    Article  PubMed  CAS  Google Scholar 

  105. Renner O, Blanco-Aparicio C, Grassow M et al (2008) Activation of PI3K by membrane localization of p110. predisposes mammary glands to neoplastic transformation. Cancer Res (in pres

  106. Xiao A, Wu H, Pandolfi PP et al (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168

    Article  PubMed  CAS  Google Scholar 

  107. Xiao A, Yin C, Yang C et al (2005) Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res 65:5172–5180

    Article  PubMed  CAS  Google Scholar 

  108. Bai F, Pei XH, Pandolfi PP, Xiong Y (2006) p18 Ink4c and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol Cell Biol 26:4564–4576

    Article  PubMed  CAS  Google Scholar 

  109. Fruman DA (2004) Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr Opin Immunol 16:314–320

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki H, Terauchi Y, Fujiwara M et al (1999) Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of phosphoinositide 3-kinase. Science 283:390–392

    Article  PubMed  CAS  Google Scholar 

  111. Fruman DA, Snapper SB, Yballe CM et al (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283:393–397

    Article  PubMed  CAS  Google Scholar 

  112. Terauchi Y, Tsuji Y, Satoh S et al (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet 21:230–235

    Article  PubMed  CAS  Google Scholar 

  113. Chen D, Mauvais-Jarvis F, Bluher M et al (2004) p50alpha/p55alpha phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol Cell Biol 24:320–329

    Article  PubMed  CAS  Google Scholar 

  114. Yuan TL, Choi HS, Matsui A et al (2008) Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A 105:9739–9744

    Article  PubMed  CAS  Google Scholar 

  115. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22

    Article  PubMed  CAS  Google Scholar 

  116. Gupta S, Ramjaun AR, Haiko P et al (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  PubMed  CAS  Google Scholar 

  117. Lawlor MA, Mora A, Ashby PR et al (2002) Essential role of PDK1 in regulating cell size and development in mice. EMBO J 21:3728–3738

    Article  PubMed  CAS  Google Scholar 

  118. Bayascas JR, Wullschleger S, Sakamoto K et al (2008) Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 28:3258–3272

    Article  PubMed  CAS  Google Scholar 

  119. Hashimoto N, Kido Y, Uchida T et al (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38:589–593

    Article  PubMed  CAS  Google Scholar 

  120. Hinton HJ, Alessi DR, Cantrell DA (2004) The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol 5:539–545

    Article  PubMed  CAS  Google Scholar 

  121. Ackler S, Ahmad S, Tobias C et al (2002) Delayed mammary gland involution in MMTVAKT1 transgenic mice. Oncogene 21:198–206

    Article  PubMed  CAS  Google Scholar 

  122. Hutchinson J, Jin J, Cardiff RD et al (2001) Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 21:2203–2212

    Article  PubMed  CAS  Google Scholar 

  123. Schwertfeger KL, Richert MM, Anderson SM (2001) Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 15:867–881

    Article  PubMed  CAS  Google Scholar 

  124. Majumder PK, Yeh JJ, George DJ et al (2003) Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci U S A 100:7841–7846

    Article  PubMed  CAS  Google Scholar 

  125. Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  PubMed  CAS  Google Scholar 

  126. Ju X, Katiyar S, Wang C et al (2007) Akt1 governs breast cancer progression in vivo. Proc Natl Acad Sci U S A 104:7438–7443

    Article  PubMed  CAS  Google Scholar 

  127. Deng CX, Brodie SG (2001) Knockout mouse models and mammary tumorigenesis. Semin Cancer Biol 11:387–394

    Article  PubMed  CAS  Google Scholar 

  128. Dunbar ME, Wysolmerski JJ (2001) Mammary ductal and alveolar development: lesson learned from genetically manipulated mice. Microsc Res Tech 52:163–170

    Article  PubMed  CAS  Google Scholar 

  129. Webster MA, Hutchinson JN, Rauh MJ et al (1998) Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 18:2344–2359

    PubMed  CAS  Google Scholar 

  130. Hutchinson JN, Jin J, Cardiff RD et al (2004) Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res 64:3171–3178

    Article  PubMed  CAS  Google Scholar 

  131. Maroulakou IG, Oemler W, Naber SP, Tsichlis PN (2007) Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res 67:167–177

    Article  PubMed  CAS  Google Scholar 

  132. Yanagi S, Kishimoto H, Kawahara K et al (2007) Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest 117:2929–2940

    Article  PubMed  CAS  Google Scholar 

  133. Hagenbeek TJ, Naspetti M, Malergue F et al (2004) The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med 200:883–894

    Article  PubMed  CAS  Google Scholar 

  134. Hagenbeek TJ, Spits H (2008) T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 22:608–619

    Article  PubMed  CAS  Google Scholar 

  135. Ma X, Ziel-van der Made AC, Autar B et al (2005) Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res 65:5730–5739

    Article  PubMed  CAS  Google Scholar 

  136. Postic C, Magnuson MA (2000) DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis 26:149–150

    Article  PubMed  CAS  Google Scholar 

  137. Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    PubMed  CAS  Google Scholar 

  138. Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101:2082–2087

    Article  PubMed  CAS  Google Scholar 

  139. Ford-Hutchinson AF, Ali Z, Lines SE et al (2007) Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. J Bone Miner Res 22:1245–1259

    Article  PubMed  CAS  Google Scholar 

  140. Stanger BZ, Stiles B, Lauwers GY et al (2005) Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8:185–195

    Article  PubMed  CAS  Google Scholar 

  141. Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A (2007) Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res 67:959–966

    Article  PubMed  CAS  Google Scholar 

  142. Kimura T, Suzuki A, Fujita Y et al (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130:1691–1700

    Article  PubMed  CAS  Google Scholar 

  143. Knobbe CB, Lapin V, Suzuki A, Mak TW (2008) The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27:5398–5415

    Article  PubMed  CAS  Google Scholar 

  144. Hirsch E, Katanaev VL, Garlanda C et al (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053

    Article  PubMed  CAS  Google Scholar 

  145. Rodriguez-Borlado L, Barber DF, Hernandez C et al (2003) Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J Immunol 170:4475–4482

    PubMed  CAS  Google Scholar 

  146. Cho H, Thorvaldsen JL, Chu Q et al (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276:38349–38352

    Article  PubMed  CAS  Google Scholar 

  147. Chen WS, Xu PZ, Gottlob K et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15:2203–2208

    Article  PubMed  CAS  Google Scholar 

  148. Kawamura N, Kugimiya F, Oshima Y et al (2007) Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE 2:e1058

    Article  PubMed  CAS  Google Scholar 

  149. Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112:197–208

    PubMed  CAS  Google Scholar 

  150. Tschopp O, Yang ZZ, Brodbeck D et al (2005) Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132: 2943–2954

    Article  PubMed  CAS  Google Scholar 

  151. Peng XD, Xu PZ, Chen ML et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365

    Article  PubMed  CAS  Google Scholar 

  152. Yang ZZ, Tschopp O, Di-Poi N et al (2005) Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 25:10407–10418

    Article  PubMed  CAS  Google Scholar 

  153. Shioi T, McMullen JR, Kang PM et al (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22:2799–2809

    Article  PubMed  CAS  Google Scholar 

  154. Jones RG, Parsons M, Bonnard M et al (2000) Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 191:1721–1734

    Article  PubMed  CAS  Google Scholar 

  155. Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7:1133–1137

    Article  PubMed  CAS  Google Scholar 

  156. Bernal-Mizrachi E, Wen W, Stahlhut S et al (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108:1631–1638

    PubMed  CAS  Google Scholar 

  157. Blanco-Aparicio C, Perez-Gallego L, Pequeno B et al (2007) Mice expressing myrAKT1 in the mammary gland develop carcinogen-induced ER-positive mammary tumors that mimic human breast cancer. Carcinogenesis 28:584–594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amancio Carnero.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, O., Blanco-Aparicio, C. & Carnero, A. Genetic modelling of the PTEN/AKT pathway in cancer research. Clin Transl Oncol 10, 618–627 (2008). https://doi.org/10.1007/s12094-008-0262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0262-1

Keywords

Navigation