Clinical and Translational Oncology

, Volume 10, Issue 9, pp 543–551 | Cite as

Therapeutic vaccines for non-Hodgkin B-cell lymphoma

  • Javier BrionesEmail author
Educational Series Red Series


Despite current therapeutic strategies for B-cell lymphoma, including chemotherapy and transplantation, the majority of patients are not cured. The characterisation of several tumour antigens has made immunotherapy an interesting approach to the treatment of patients with lymphoma. The idiotype region in the immunoglobulin expressed by the tumour B cells is not only a clonal marker but also a tumour-specific antigen. For this reason, the idiotype is an ideal target for immunotherapy. Extensive studies of idiotype vaccination have been done in murine lymphoma models and some of these strategies are now being tested in clinical trials. In the last few years, new strategies to improve the immune response against lymphoma cells have been studied, including the use of DNA or recombinant viruses encoding tumour-antigens, genetically modified tumour cells and a number of immune adjuvants targeting dendritic cells, T cells or NK cells.


Lymphoma Idiotype Cancer vaccines T cells Dendritic cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levy R, Dilley J (1978) Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization. Proc Natl Acad Sci USA 75:2411–2415PubMedCrossRefGoogle Scholar
  2. 2.
    Davis TA, Maloney DG, Czerwinski DK et al (1998) Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 92:1184–1190PubMedGoogle Scholar
  3. 3.
    Save S, Wright G, Tan B et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159–2169CrossRefGoogle Scholar
  4. 4.
    Kwak L, Campbell M, Czerwinski DK et al (1992) Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 139:1209–1215Google Scholar
  5. 5.
    Hsu F, Caspar C, Czerwinski DK et al (1997) Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma: long-term results of a clinical trial. Blood 89:3129–3135PubMedGoogle Scholar
  6. 6.
    Tao MH, Levy R (1993) Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 362:755–758PubMedCrossRefGoogle Scholar
  7. 7.
    Bendandi M, Gocke C, Kobrin C et al (1999) Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 5:1171–1177PubMedCrossRefGoogle Scholar
  8. 8.
    Bertinetti C, Zirlik K, Heining-Mikesch et al (2006) Phase I trial of a novel intradermal idiotype vaccine in patients with advanced B-cell lymphoma: specific immune responses despite profound immunosuppression. Cancer Res 66: 4496–4502PubMedCrossRefGoogle Scholar
  9. 9.
    McCormick A, Humagai M, Hanley K et al (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA 96:703–708PubMedCrossRefGoogle Scholar
  10. 10.
    Rastetter W, Molina A, Whire C (2004) Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu Rev Med 55: 477–503PubMedCrossRefGoogle Scholar
  11. 11.
    Koc O, Redfern C, Wiernik P et al (2005) Extended follow-up and analysis with central pathology review of patients receiving FavId (Id/KLH) vaccine following rituximab. Blood 106 [Abstract 772]Google Scholar
  12. 12.
    Neelapu S, Kwak L, Kobrin C et al (2005) Vaccine induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat Med 11:986–991PubMedGoogle Scholar
  13. 13.
    Levy R, Robertson M, Leonard J et al (2008) Results of a phase 3 trial evaluating safety and efficacy of specific immunotherapy, recombinant idiotype conjugated to KLH with GM-CSF, com pared to non-specific immunotherapy, KLH with GMCSF, in patients with follicular non-Hodgkins lymphoma. Ann Oncol 19[Suppl 4] [Abstract 057]Google Scholar
  14. 14.
    Rice J, Ottensmeier H, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120PubMedCrossRefGoogle Scholar
  15. 15.
    Syrengelas A, Chen TT, Levy R (1996) DNA immunization induces protective immunity against B-cell lymphoma. Nat Med 2:1038–1041PubMedCrossRefGoogle Scholar
  16. 16.
    Syrengelas A, Levy R (1999) DNA vaccination against the idiotype of a murine B cell lymphoma: mechanism of tumor protection. J Immunol 162:4790–4795PubMedGoogle Scholar
  17. 17.
    Zhu D, Rice J, Savelyeva N, Stevenson FK (2001) DNA fusion vaccines against B-cell tumors. Trends Mol Med 7:566–572PubMedCrossRefGoogle Scholar
  18. 18.
    Modlin RL (2000) Immunology: a Toll for DNA vaccines. Nature 408:659–660PubMedCrossRefGoogle Scholar
  19. 19.
    Klinman D, Currie D, Gursel I, Verthely D (2004) Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev 199:201–216PubMedCrossRefGoogle Scholar
  20. 20.
    Biragyn T, Tani K, Grimm M, Weeks S, Kwak L (1999) Genetic fusion of chemokines to a self tumor antigen induces protective immunity against lymphoma and myeloma. Nat Med 4:1281–1286Google Scholar
  21. 21.
    King CA, Spellerberg M, Zhu D et al (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4:1281–1286PubMedCrossRefGoogle Scholar
  22. 22.
    Timmerman JM, Singh G, Hermanson G et al (2002) Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 62:5845–5852PubMedGoogle Scholar
  23. 23.
    Harrop R, John J, Carroll MW (2006) Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 58:931–947PubMedCrossRefGoogle Scholar
  24. 24.
    Chen P, Wang M, Bronte Z et al (1996) Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumorassociated antigen. J Immunol 156:224–231PubMedGoogle Scholar
  25. 25.
    Toes RM, Hoeben R, van der Voort E et al (1997) Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion. Proc Natl Acad Sci USA 94:14660–14665PubMedCrossRefGoogle Scholar
  26. 26.
    Chartier C, Degryse C, Gantzer M et al (1996) Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol 70:4805–4810PubMedGoogle Scholar
  27. 27.
    Shiver J, Emini E (2004) Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med 55:355–372PubMedCrossRefGoogle Scholar
  28. 28.
    Timmerman JM, Caspar C, Lambert S et al (2001) Idiotype-encoding recombinant adenoviruses provide immunity against murine B-cell lymphomas. Blood 97:1370–1377PubMedCrossRefGoogle Scholar
  29. 29.
    Mastrangelo M, Eisenlohr L, Gomella L, Lattime E (2000) Poxvirus vectors: orphaned and underappreciated. J Clin Invest 105:1031–1034PubMedCrossRefGoogle Scholar
  30. 30.
    Grosenbach D, Barrientos J, Schlom J, Hodge J (2001) Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res 61:4497–4505PubMedGoogle Scholar
  31. 31.
    Marchall JL, Hoyer R, Toomey MA et al (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicant avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18:3964–3973Google Scholar
  32. 32.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  33. 33.
    Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529PubMedCrossRefGoogle Scholar
  34. 34.
    Timmerman JM, Levy R (2000) Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. J Immunol 164:4797–4803PubMedGoogle Scholar
  35. 35.
    Jenne L, Schuler G, Steinkasserer A (2001) Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22:102–107PubMedCrossRefGoogle Scholar
  36. 36.
    Brosart P, Goldrath A, Butz E et al (1997) Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 158:3270–3276Google Scholar
  37. 37.
    Song W, Kong HL, Carpenter H et al (1997) Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 186:1247–1256PubMedCrossRefGoogle Scholar
  38. 38.
    Klein C, Bueler H, Mulligan R (2000) Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 191:1699–1707PubMedCrossRefGoogle Scholar
  39. 39.
    Gatza E, Okada CY (2002) Tumor cell lysatepulsed dendritic cells are more effective than TCR Id protein vaccines for active immunotherapy of T cell lymphoma. J Immunol 169:5227–5235PubMedGoogle Scholar
  40. 40.
    Gong J, Chen D, Kashiwaba M, Kufe D (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 3:558–561PubMedCrossRefGoogle Scholar
  41. 41.
    Gong J, Koido S, Chen D et al (2002) Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood 99:2512–2517PubMedCrossRefGoogle Scholar
  42. 42.
    Alvarez E, Moga E, Sierra J, Briones J (2008) Antitumoral effect of vaccination with CD40L-genetically modified dendritic and tumor cells fusions in myeloma. Ann Oncol 19[Suppl 4] [Abstract 248]Google Scholar
  43. 43.
    Velde V, Berneman Z, Rendeloo V (2008) Immunotherapy of hematological malignancies using dendritic cells. Bull Cancer 95:320–326PubMedGoogle Scholar
  44. 44.
    Hsu F, Benike C, Fagnoni F et al (1996) Vaccination of patients with B-cell lymphoma using autologous-pulsed dendritic cells. Nat Med 2:52–58PubMedCrossRefGoogle Scholar
  45. 45.
    Timmerman J, Czerwinski D, Davis T et al (2002) Idiotype-pulsed dendritic cell vaccination for Bcell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517–1526PubMedCrossRefGoogle Scholar
  46. 46.
    Liebowitz D, Lee K, June C (1998) Costimulatory approaches to adoptive immunotherapy. Curr Opin Oncol 10:1370–1377CrossRefGoogle Scholar
  47. 47.
    Coyle A, Gutierrez-Ramos J (2001) The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2: 203–209PubMedCrossRefGoogle Scholar
  48. 48.
    Colombo, Forni G (1994) Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today 15:48–51PubMedCrossRefGoogle Scholar
  49. 49.
    Levitsky H, Montgomery J, Ahmadzadeh M et al (1996) Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1 transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156:1537–1546Google Scholar
  50. 50.
    Borrello I (2003) Autologous tumor combined with a GM-CSF secreting cell line vaccine following autologous stem cell transplant in multiple myeloma. Blood 102 [Abstract 1794]Google Scholar
  51. 51.
    Schultze J, Cardoso A, Freeman G et al (1995) Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their immunogenicity. Proc Natl Acad Sci USA 92:8200–8204PubMedCrossRefGoogle Scholar
  52. 52.
    Briones J, Timmerman, J, Panicali D, Levy R (2003). Antitumor immunity after vaccination with B lymphoma cells overexpressing a triad of costimulatory molecules. J Natl Cancer Inst 95:548–555PubMedCrossRefGoogle Scholar
  53. 53.
    Van Kooten C, Banchereau J (2000) CD40:CD40 ligand. J Leukoc Biol 67:2–17PubMedGoogle Scholar
  54. 54.
    Kato K, Cantwell M, Sharma S et al (1998) Gene transfer of Cd40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 101:11333–1141Google Scholar
  55. 55.
    Briones J, Timmerman J, Levy R (2002) In vivo antitumor effect of CD40L-transduced tumor cells as a vaccine for B-cell lymphoma. Cancer Res 62:3195–3199PubMedGoogle Scholar
  56. 56.
    Wierda W, Cantwell M, Woods S et al (2000) CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 96:2917–2924PubMedGoogle Scholar
  57. 57.
    Biagi E, Rousseau R, Yvon E et al (2005) Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res 11:6916–6923PubMedCrossRefGoogle Scholar
  58. 58.
    Osada T, Chong G, Tansik R et al (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57:1115–1124PubMedCrossRefGoogle Scholar
  59. 59.
    Egen J, Khuns M, Allison JP (2004) CTLA4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618CrossRefGoogle Scholar
  60. 60.
    Hurwitz A, Yu T, Leach D, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95:10067–10071PubMedCrossRefGoogle Scholar
  61. 61.
    Roncarolo MG, Battaglia M (2007) Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 7:585–598PubMedCrossRefGoogle Scholar
  62. 62.
    Litzonger M, Fernando R, Vuriel T et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110:3192–3201CrossRefGoogle Scholar
  63. 63.
    Morse M, Hobeika A, Osada T et al (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112:610–618PubMedCrossRefGoogle Scholar
  64. 64.
    Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339PubMedCrossRefGoogle Scholar
  65. 65.
    Von Strandmann EP, Hansen H, Reiners K et al (2006) A novel bispecific protein (ULBP2-BB4) targeting the NKGD2 receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107:1955–1962CrossRefGoogle Scholar
  66. 66.
    Bendelac A, Sabage P, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336PubMedCrossRefGoogle Scholar
  67. 67.
    Shimizu K, Kurosawa Y, Taniguchi M et al (2007) Cross-presentation of glycolipid from tumor cells loaded with.-galactosylceramide leads to potent and long-lived T cell-mediated immunity via dendritic cells. J Exp Med 11:2641–2653CrossRefGoogle Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  1. 1.Department of Clinical HematologyHospital Santa Creu i Sant PauBarcelonaSpain

Personalised recommendations