Clinical and Translational Oncology

, Volume 10, Issue 9, pp 538–542 | Cite as

Role of CHK2 in cancer development

  • Rosario PeronaEmail author
  • Verónica Moncho-Amor
  • Rosario Machado-Pinilla
  • Cristóbal Belda-Iniesta
  • Isabel Sánchez Pérez
Educational Series Green Series


DNA repair pathways enable tumour cells to survive DNA damage induced by external agents such as therapeutic treatments. Signalling cascades involved in these pathways comprise the DNA-dependent protein kinase (DNA-PK), Ataxia-telangiectasia mutated (ATM), ATM and Rad3 related (ATR) and checkpoint kinases I and 2 (Chk1/Chk2), among others. ATM and ATR phosphorylate, respectively, Chk2 and Chk1, leading to activation of checkpoints. Chk2 acts as a signal distributor, dispersing checkpoint signal to downstream targets such as p53, Cdc25A, Cdc25C, BRCA1 and E2F1. A role of Chk2 as a candidate tumour suppressor has been suggested based on both mouse genetics and somatic tumour studies. We will discuss here the possible role of this kinase in human carcinogenesis and the possibility to use it as a target to increment DNA damage in cancer cells in response to DNAdamaging therapies.


CHK2 ATM ATR DNA damage Checkpoints Chemotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson SP (2001) Detecting, signalling and repairing DNA double-strand breaks. Biochem Soc Trans 29:655–661. ReviewPubMedCrossRefGoogle Scholar
  2. 2.
    Su TT (2006) Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet 40:187–208. ReviewPubMedCrossRefGoogle Scholar
  3. 3.
    Sánchez-Pérez I (2006) DNA repair inhibitors in cancer treatment. Clin Transl Oncol 8:642–646. ReviewPubMedCrossRefGoogle Scholar
  4. 4.
    O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair-insights from human genetics. Nat Rev Genet 7:45–54PubMedCrossRefGoogle Scholar
  5. 5.
    Karlsson-Rosenthal C, Millar JB (2006) Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol 16:285–292PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JS, Collins KM, Brown AL et al (2000) hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404: 201–204PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Willers H, Feng Z et al (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24:708–718PubMedCrossRefGoogle Scholar
  8. 8.
    Wang HC, Chou WC, Shieh SY, Shen CY (2006) Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res 66:1391–1400PubMedCrossRefGoogle Scholar
  9. 9.
    Zhuang J, Zhang J, Willers H et al (2006) Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous endjoining. Cancer Res 66:1401–1408PubMedCrossRefGoogle Scholar
  10. 10.
    Tan Y, Raychaudhuri P, Costa RH (2007) Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 27:1007–1016PubMedCrossRefGoogle Scholar
  11. 11.
    Bell DW, Varley JM, Szydlo TE et al (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531PubMedCrossRefGoogle Scholar
  12. 12.
    Li FP, Fraumeni JF Jr, Mulvihill JJ et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362PubMedGoogle Scholar
  13. 13.
    Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedCrossRefGoogle Scholar
  14. 14.
    Meijers-Heijboer H, van den Ouweland A, Klijn J et al; CHEK2-Breast Cancer Consortium (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59PubMedCrossRefGoogle Scholar
  15. 15.
    Seppälä EH, Ikonen T, Autio V et al (2003) Germline alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9:5252–5256PubMedGoogle Scholar
  16. 16.
    Cybulski C, Górski B, Huzarski T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135PubMedCrossRefGoogle Scholar
  17. 17.
    Szymanska-Pasternak J, Szymanska A, Medrek K et al (2006) CHEK2 variants predispose to benign, borderline and low-grade invasive ovarian tumors. Gynecol Oncol 102:429–431PubMedCrossRefGoogle Scholar
  18. 18.
    Kilpivaara O, Alhopuro P, Vahteristo P et al (2006) CHEK2 I157T associates with familial and sporadic colorectal cancer. J Med Genet 43:e34PubMedCrossRefGoogle Scholar
  19. 19.
    Broeks A, de Witte L, Nooijen A et al (2004) Excess risk for contralateral breast cancer in CHEK2*1100delC germline mutation carriers. Breast Cancer Res Treat 83:91–93PubMedCrossRefGoogle Scholar
  20. 20.
    Stracker TH, Couto SS, Cordon-Cardo C et al (2008) Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. Mol Cell 31:21–32PubMedCrossRefGoogle Scholar
  21. 21.
    Oldenburg RA, Kroeze-Jansema K, Kraan J et al (2003) The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res 63:8153–8157PubMedGoogle Scholar
  22. 22.
    Ingvarsson S, Sigbjornsdottir BI, Huiping C et al (2002) Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res 4:R4PubMedCrossRefGoogle Scholar
  23. 23.
    Sallinen SL, Ikonen T, Haapasalo H, Schleutker J (2005) CHEK2 mutations in primary glioblastomas. J Neurooncol 74:93–95PubMedCrossRefGoogle Scholar
  24. 24.
    Williams LH, Choong D, Johnson SA, Campbell IG (2006) Genetic and epigenetic analysis of CHEK2 in sporadic breast, colon, and ovarian cancers. Clin Cancer Res 12:6967–6972PubMedCrossRefGoogle Scholar
  25. 25.
    Stawinska M, Cygankiewicz A, Trzcinski R et al (2008) Alterations of Chk1 and Chk2 expression in colon cancer. Int J Colorectal Dis [Epub ahead of print]Google Scholar
  26. 26.
    Zhou BB, Chaturvedi P, Spring K et al (2000) Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem 275: 10342–10348PubMedCrossRefGoogle Scholar
  27. 27.
    Graves PR, Yu L, Schwarz JK et al (2000) The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275:5600–5605PubMedCrossRefGoogle Scholar
  28. 28.
    Busby EC, Leistritz DF, Abraham RT et al (2000) The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 60:2108–2112PubMedGoogle Scholar
  29. 29.
    Wang Q, Fan S, Eastman A et al (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88:956–965PubMedCrossRefGoogle Scholar
  30. 30.
    Tibbetts RS, Brumbaugh KM, Williams JM et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–157PubMedCrossRefGoogle Scholar
  31. 31.
    Koniaras K, Cuddihy AR, Christopoulos H et al (2001) Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20:7453–7463PubMedCrossRefGoogle Scholar
  32. 32.
    Janetka JW, Ashwell S, Zabludoff S, Lyne P (2007) Inhibitors of checkpoint kinases: from discovery to the clinic. Curr Opin Drug Discov Dev 10:473–486. ReviewGoogle Scholar
  33. 33.
    O’Connor MJ, Martin NM, Smith GC (2007) Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26:7816–7824PubMedCrossRefGoogle Scholar
  34. 34.
    Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519. ReviewPubMedGoogle Scholar
  35. 35.
    Arienti KL, Brunmark A, Axe FU et al (2005) Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 48:1873–1885PubMedCrossRefGoogle Scholar
  36. 36.
    Carlessi L, Buscemi G, Larson G et al (2007) Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 6:935–944PubMedCrossRefGoogle Scholar
  37. 37.
    Ghosh JC, Dohi T, Raskett CM et al (2006) Activated checkpoint kinase 2 provides a survival signal for tumor cells. Cancer Res 66:11576–11579PubMedCrossRefGoogle Scholar
  38. 38.
    Chen CR, Wang W, Rogoff HA et al (2005) Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer. Cancer Res 65:6017–6021PubMedCrossRefGoogle Scholar
  39. 39.
    Antoni L, Sodha N, Collins I, Garrett MD (2007) CHK2 kinase: cancer susceptibility and cancer therapy-two sides of the same coin? Nat Rev Cancer 7:925–936PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  • Rosario Perona
    • 1
    • 2
    Email author
  • Verónica Moncho-Amor
    • 1
    • 2
  • Rosario Machado-Pinilla
    • 1
    • 2
  • Cristóbal Belda-Iniesta
    • 3
  • Isabel Sánchez Pérez
    • 1
    • 2
  1. 1.Instituto de Investigaciones Biomédicas C.S.I.C./U.A.M.MadridSpain
  2. 2.Translational Oncology Unit C.S.I.C./U.A.M.CIBER de Enfermedades Raras (CIBERER)ValenciaSpain
  3. 3.Translational Oncology Unit CSIC/UAM at Medical Oncology DivisionUniversity Hospital La Paz Universidad Autónoma de MadridMadridSpain

Personalised recommendations