Molecular biology of pancreatic cancer

  • Cristóbal Belda-Iniesta
  • Inmaculada Ibáñez de Cáceres
  • Jorge Barriuso
  • Javier de Castro Carpeño
  • Manuel González Barón
  • Jaime FeliúEmail author
Educational Series Blue Series


Pancreatic cancer is a leading cause of cancer death. This devastating disease has the horrible honour of close to equal incidence and mortality rates. Late diagnosis and a constitutive resistance to every chemotherapy approach are responsible for this scenario. However, molecular biology tools in cooperation with translational efforts have dissected several secrets that underlie pancreatic cancer. Progressive acquisition of malignant, invasive phenotypes from pre-malignant lesions, recent revelations on core signalling pathways and new targeted designed trials offer a better future for pancreatic cancer patients. This review will summarise recent advances in the molecular biology of pancreatic cancer.


Pancreatic cancer K-ras Cyclins TGFβ STAT3 EGFr 


  1. 1.
    Izeradjene K, Combs C, Best M et al (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243PubMedCrossRefGoogle Scholar
  2. 2.
    Hruban RH, Goggins M, Parsons J et al (2000) Progression model for pancreatic cancer. Clin Cancer Res 6:2969–2972PubMedGoogle Scholar
  3. 3.
    Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450PubMedCrossRefGoogle Scholar
  4. 4.
    Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483PubMedCrossRefGoogle Scholar
  5. 5.
    Bardeesy N, Aguirre AJ, Chu GC et al (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103:5947–5952PubMedCrossRefGoogle Scholar
  6. 6.
    Aguirre J, Bardeesy N, Sinha M et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126PubMedCrossRefGoogle Scholar
  7. 7.
    Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science DOI10.1126/Science. 1164368Google Scholar
  8. 8.
    Quinlan MP, Quatela SE, Philips MR et al (2008) Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol Cell Biol 28:2659–2674PubMedCrossRefGoogle Scholar
  9. 9.
    Park SW, Davison JM, Rhee J et al (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134:2080–2090PubMedCrossRefGoogle Scholar
  10. 10.
    Pickles M, Leask A (2007) Analysis of CCN2 promoter activity in PANC-1 cells: regulation by ras/MEK/ERK. J Cell Commun Signal 1:85–90PubMedCrossRefGoogle Scholar
  11. 11.
    Aikawa T, Gunn J, Spong SM et al (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5:1108–1116PubMedCrossRefGoogle Scholar
  12. 12.
    Ji Z, Mei FC, Xie J et al (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282:14048–14055PubMedCrossRefGoogle Scholar
  13. 13.
    Skalicky DA, Kench JG, Segara D et al (2006) Cyclin E expression and outcome in pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 15:1941–1947PubMedCrossRefGoogle Scholar
  14. 14.
    Biankin AV, Biankin SA, Kench JG et al (2002) Cyclin D regulates FGFR-1 isoforms IIIc and IIIb (isoform IIIc enhances and FGFR1-IIIb inhibits pancreatic cancer cell growth. Gut 50:861–868PubMedCrossRefGoogle Scholar
  15. 15.
    Chen G, Wang J, Liu Z et al (2008) Exon III splicing of fibroblast growth factor receptor 1 is modulated by growth factors and cyclin D1. Pancreas 37:159–164PubMedGoogle Scholar
  16. 16.
    Tiemann K, Heitling U, Kosmahl M et al (2007) Solid pseudopapillary neoplasms of the pancreas show an interruption of the Wnt-signaling pathway and express gene products of 11q. Mod Pathol 20:955–960PubMedCrossRefGoogle Scholar
  17. 17.
    Ghiorzo P, Pastorino L, Bonelli L et al (2004) INK4/ARF germline alterations in pancreatic cancer patients. Ann Oncol 15:70–78PubMedCrossRefGoogle Scholar
  18. 18.
    Moskaluk CA, Hruban H, Lietman A et al (1998) Novel germline p16(INK4) allele (Asp145Cys) in a family with multiple pancreatic carcinomas. Mutations in brief no. 148. Hum Mutat 12:70PubMedCrossRefGoogle Scholar
  19. 19.
    Redston MS, Caldas C, Seymour AB et al (1994) p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 54: 3025–3033PubMedGoogle Scholar
  20. 20.
    Yan W, Liu G, Scoumanne A et al (2008) Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res 68:6789–6796PubMedCrossRefGoogle Scholar
  21. 21.
    Miyasaka Y, Nagai E, Yamaguchi H et al (2007) The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 13:4371–4377PubMedCrossRefGoogle Scholar
  22. 22.
    Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657PubMedGoogle Scholar
  23. 23.
    Guweidhi A, Kleeff J, Giese N et al (2004) Enhanced expression of 14-3-3sigma in pancreatic cancer and its role in cell cycle regulation and apoptosis. Carcinogenesis 25:1575–1585PubMedCrossRefGoogle Scholar
  24. 24.
    Zawel L, Dai JL, Buckhaults P et al (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617PubMedCrossRefGoogle Scholar
  25. 25.
    Peng B, Fleming JB, Breslin T et al (2002) Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. Clin Cancer Res 8:3628–3638PubMedGoogle Scholar
  26. 26.
    Zhao S, Venkatasubbarao K, Lazor JW et al (2008) Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res 68:4221–4228PubMedCrossRefGoogle Scholar
  27. 27.
    Ueda S, Ogata S, Tsuda H et al (2004) The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29: e1–8PubMedCrossRefGoogle Scholar
  28. 28.
    Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966PubMedCrossRefGoogle Scholar
  29. 29.
    Siveke JT, Einwächter H, Sipos B et al (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12: 266–279PubMedCrossRefGoogle Scholar
  30. 30.
    Schreiner B, Greten FR, Baur DM et al (2003) Murine pancreatic tumor cell line TD2 bears the characteristic pattern of genetic changes with two independently amplified gene loci. Oncogene 22:6802–6809PubMedCrossRefGoogle Scholar
  31. 31.
    Tzeng CW, Frolov A, Frolova N et al (2007) Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. Surgery 141:464–469PubMedCrossRefGoogle Scholar
  32. 32.
    Tzeng CW, Frolov A, Frolova N et al (2007) EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients. J Surg Res 143: 20–26PubMedCrossRefGoogle Scholar
  33. 33.
    Holzmann K, Kohlhammer H, Schwaenen C et al (2004) Genomic DNA-chip hybridization reveals a higher incidence of genomic amplifications in pancreatic cancer than conventional comparative genomic hybridization and leads to the identification of novel candidate genes. Cancer Res 64: 4428–4433PubMedCrossRefGoogle Scholar
  34. 34.
    Pino MS, Shrader M, Baker CH et al (2006) Transforming growth factor alpha expression drives constitutive epidermal growth factor receptor pathway activation and sensitivity to gefitinib (Iressa) in human pancreatic cancer cell lines. Cancer Res 66:3802–3812PubMedCrossRefGoogle Scholar
  35. 35.
    Kwak EL, Jankowski J, Thayer SP et al (2006) Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res 12:4283–4287PubMedCrossRefGoogle Scholar
  36. 36.
    Hurtado M, Lozano JJ, Castellanos E et al (2007) Activation of the epidermal growth factor signalling pathway by tissue plasminogen activator in pancreas cancer cells. Gut 56:1266–1274PubMedCrossRefGoogle Scholar
  37. 37.
    Billadeau DD, Chatterjee S, Bramati P et al (2006) Characterization of the CXCR4 signaling in pancreatic cancer cells. Int J Gastrointest Cancer 37:110–119PubMedGoogle Scholar
  38. 38.
    Tan X, Egami H, Abe M et al (2005) Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEKERK signal transduction pathway. J Clin Pathol 58:1242–1248PubMedCrossRefGoogle Scholar
  39. 39.
    Takai E, Tan X, Tamori Y et al (2005) Correlation of translocation of tight junction protein Zonula occludens-1 and activation of epidermal growth factor receptor in the regulation of invasion of pancreatic cancer cells. Int J Oncol 27: 645–651PubMedGoogle Scholar
  40. 40.
    Jimeno A, Tan AC, Coffa J et al (2008) Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res 68:2841–2849PubMedCrossRefGoogle Scholar
  41. 41.
    Sloss CM, Wang F, Liu R et al (2008) Proteasome inhibition activates epidermal growth factor receptor (EGFR) and EGFR-independent mitogenic kinase signaling pathways in pancreatic cancer cells. Clin Cancer Res 14:5116–5123PubMedCrossRefGoogle Scholar
  42. 42.
    DeArmond D, Brattain MG, Jessup JM et al (2003) Autocrine-mediated ErbB-2 kinase activation of STAT3 is required for growth factor independence of pancreatic cancer cell lines. Oncogene 22:7781–7795PubMedCrossRefGoogle Scholar
  43. 43.
    Algül H, Wagner M, Lesina M et al (2007) Over-expression of ErbB2 in the exocrine pancreas induces an inflammatory response but not increased proliferation. Int J Cancer 121:1410–1416PubMedCrossRefGoogle Scholar
  44. 44.
    Buck E, Eyzaguirre A, Haley JD et al (2006) Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol Cancer Ther 5:2051–2059PubMedCrossRefGoogle Scholar
  45. 45.
    Büchler P, Reber HA, Lavey RS et al (2004) Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 120:295–303PubMedCrossRefGoogle Scholar
  46. 46.
    Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893PubMedGoogle Scholar
  47. 47.
    Seo Y, Baba H, Fukuda T et al (2000) High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer 88:2239–2245PubMedCrossRefGoogle Scholar
  48. 48.
    Büchler P, Reber HA, Büchler MW et al (2002) VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg 236:738–749PubMedCrossRefGoogle Scholar
  49. 49.
    Fukahi K, Fukasawa M, Neufeld G et al (2004) Aberrant expression of neuropilin-1 and-2 in human pancreatic cancer cells. Clin Cancer Res 10: 581–590PubMedCrossRefGoogle Scholar
  50. 50.
    Saif MW (2006) Anti-angiogenesis therapy in pancreatic carcinoma. JOP 7:163–173PubMedGoogle Scholar
  51. 51.
    McCarty MF, Somcio RJ, Stoeltzing O et al (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117: 2114–2122PubMedCrossRefGoogle Scholar
  52. 52.
    Shen J, Vil MD, Zhang H et al (2007) An antibody directed against PDGF receptor beta enhances the antitumor and the anti-angiogenic activities of an anti-VEGF receptor 2 antibody. Biochem Biophys Res Commun 357:1142–1147PubMedCrossRefGoogle Scholar
  53. 53.
    Esposito I, Menicagli M, Funel N et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57:630–636PubMedCrossRefGoogle Scholar
  54. 54.
    Teraoka H, Sawada T, Nishihara T et al (2001) Enhanced VEGF production and decreased immunogenicity induced by TGF-beta 1 promote liver metastasis of pancreatic cancer. Br J Cancer 85:612–617PubMedCrossRefGoogle Scholar
  55. 55.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRefGoogle Scholar
  56. 56.
    Schönleben F, Allendorf JD, Qiu W et al (2008) Mutational analyses of multiple oncogenic pathways in intraductal papillary mucinous neoplasms of the pancreas. Pancreas 36:168–172PubMedCrossRefGoogle Scholar
  57. 57.
    Schönleben F, Qiu W, Remotti HE et al (2008) PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbecks Arch Surg 393:289–296PubMedCrossRefGoogle Scholar
  58. 58.
    Haigis KM, Kendall KR, Wang Y et al (2008) Differential effects of oncogenic K-Ras and NRas on proliferation, differentiation and tumor progression in the colon. Nat Genet 40:600–608PubMedCrossRefGoogle Scholar
  59. 59.
    Mijatovic T, Gailly P, Mathieu V et al (2007) Neurotensin is a versatile modulator of in vitro human pancreatic ductal adenocarcinoma cell (PDAC) migration. Cell Oncol 29:315–326PubMedGoogle Scholar
  60. 60.
    Reichert M, Saur D, Hamacher R et al (2007) F-box protein SKP2, an oncogene up-regulated in PDAC, is transcriptionally regulated by the PI3K/AKT1 pathway in PDAC cells. Cancer Res 67:4149–4156PubMedCrossRefGoogle Scholar
  61. 61.
    Yamada N, Nishida Y, Tsutsumida H et al (2008) MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res 68:2708–2716PubMedCrossRefGoogle Scholar
  62. 62.
    Yamada N, Hamada T, Goto M et al (2006) MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer 119:1850–1857PubMedCrossRefGoogle Scholar
  63. 63.
    Fauquette V, Aubert S, Groux-Degroote S et al (2007) AP-2alpha is an important in vivo negative regulator of MUC4 expression in human pancreatic tissue and that AP-2alpha may play a tumour-suppressive role in pancreatic DAC. Carcinogenesis 28:2305–2312PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  • Cristóbal Belda-Iniesta
    • 1
    • 2
  • Inmaculada Ibáñez de Cáceres
    • 3
  • Jorge Barriuso
    • 1
  • Javier de Castro Carpeño
    • 1
  • Manuel González Barón
    • 1
    • 2
  • Jaime Feliú
    • 1
    Email author
  1. 1.Translational Oncology Unit CSIC/UAM at Medical Oncology DivisionUniversity Hospital La Paz Universidad Autónoma de MadridMadridSpain
  2. 2.MD Anderson International Cancer Center EspañaMadridSpain
  3. 3.Translational Oncology Unit (CSIC/UAM) at Biomedical Research Institute “Alberto Sols”Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations