Clinical and Translational Oncology

, Volume 10, Issue 8, pp 468–477 | Cite as

Following up tumour angiogenesis: from the basic laboratory to the clinic

  • José L. Orgaz
  • Beatriz Martínez-Poveda
  • Nuria I. Fernández-García
  • Benilde JiménezEmail author
Educational Series


Preceded by three decades of intense basic research on tumour angiogenesis, we are assisting to the translation of anti-antiangiogenic therapies as medical oncologists are increasingly using pioneering anti-angiogenic drugs in combination with standard treatments. While basic knowledge in the field of angiogenesis is reaching maturity and our level of understanding of the complex process of vessel development and growth in health and disease has been enriched at the molecular and cellular levels, the translation of this knowledge to the clinic is still in its infancy. Identifying the most suitable drugs, and the optimal dosage and schedule, as well as monitoring patients’ responses to anti-angiogenic therapy, remain challenging issues that currently limit the benefit of this new therapeutic approach in cancer. This review will focus on a comprehensive description of the experimental assays in which angiogenesis research has been founded and how the different assays complement and provide relevant information for the task of characterising the angiogenic properties of diverse tumours, giving us a variety of tools to follow up tumour angiogenesis in research models. Following up tumour angiogenesis in patients and their response to anti-angiogenic therapy is a more challenging task that will benefit in the near future from the use of non-invasive imaging methods as well as molecular and cellular biomarkers of angiogenesis suitable for clinical oncology. As both the design of the anti-angiogenic therapies and monitoring of the response are improved in the coming years to properly tailor them to the angiogenic profile of every patient, we hope to achieve increasing response and benefit of including anti-angiogenic drugs as standard in cancer therapy.


Angiogenesis Angiogenesis assays Anti-angiogenic therapy Cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352PubMedCrossRefGoogle Scholar
  2. 2.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedGoogle Scholar
  4. 4.
    Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660PubMedCrossRefGoogle Scholar
  5. 5.
    Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693PubMedCrossRefGoogle Scholar
  6. 6.
    Jimenez B, Volpert OV (2001) Mechanistic insights on the inhibition of tumor angiogenesis. J Mol Med 78:663–672PubMedCrossRefGoogle Scholar
  7. 7.
    Gao D, Nolan DJ, Mellick AS et al (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319: 195–198PubMedCrossRefGoogle Scholar
  8. 8.
    Bertolini F, Mancuso P, Shaked Y et al (2007) Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discov Today 12: 806–812PubMedCrossRefGoogle Scholar
  9. 9.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589PubMedCrossRefGoogle Scholar
  10. 10.
    Jackson CJ, Nguyen M (1997) Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell Biol 29:1167–1177PubMedCrossRefGoogle Scholar
  11. 11.
    Auerbach R, Auerbach W (2001) Assays to study angiogenesis. In: Voest EE, D’Amore PA (eds) Tumor angiogenesis and microcirculation. Marcel Dekker, New York, pp 91–102Google Scholar
  12. 12.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277Google Scholar
  13. 13.
    Staton CA, Stribbling SM, Tazzyman S et al (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85:233–248PubMedCrossRefGoogle Scholar
  14. 14.
    Alessandri G, Raju K, Gullino PM (1983) Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res 43:1790–1797PubMedGoogle Scholar
  15. 15.
    Falk W, Goodwin RH Jr, Leonard EJ (1980) A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods 33:239–247PubMedGoogle Scholar
  16. 16.
    Zetter BR (1987) Assay of capillary endothelial cell migration. Methods Enzymol 147:135–144PubMedCrossRefGoogle Scholar
  17. 17.
    Pepper MS, Belin D, Montesano R et al (1990) Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755PubMedCrossRefGoogle Scholar
  18. 18.
    Taraboletti G, Giavazzi R (2004) Modelling approaches for angiogenesis. Eur J Cancer 40:881–889PubMedCrossRefGoogle Scholar
  19. 19.
    Lawley TJ, Kubota Y (1989) Induction of morphologic differentiation of endothelial cells in culture. J Invest Dermatol 93:59S–61SPubMedCrossRefGoogle Scholar
  20. 20.
    Gagnon E, Cattaruzzi P, Griffith M et al (2002) Human vascular endothelial cells with extended life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5:21–33PubMedCrossRefGoogle Scholar
  21. 21.
    Montesano R, Pepper MS, Orci L (1993) Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105:1013–1024PubMedGoogle Scholar
  22. 22.
    Nehls V, Drenckhahn D (1995) A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50:311–322PubMedCrossRefGoogle Scholar
  23. 23.
    Nakatsu MN, Sainson RC, Aoto JN et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc Res 66:102–112PubMedCrossRefGoogle Scholar
  24. 24.
    Auerbach R, Lewis R, Shinners B et al (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40PubMedCrossRefGoogle Scholar
  25. 25.
    Auerbach R, Akhtar N, Lewis RL et al (2000) Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev 19:167–172PubMedCrossRefGoogle Scholar
  26. 26.
    Nicosia RF, Villaschi S (1995) Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73:658–666PubMedGoogle Scholar
  27. 27.
    Muthukkaruppan VR, Shinneers BL, Lewis R et al (2000) The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free organ culture system. Proc Am Assoc Cancer 41:65Google Scholar
  28. 28.
    Jain RK, Schlenger K, Hockel M et al (1997) Quan titative angiogenesis assays: progress and pro blems. Nat Med 3:1203–1208PubMedCrossRefGoogle Scholar
  29. 29.
    McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725PubMedCrossRefGoogle Scholar
  30. 30.
    Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10:588–612PubMedCrossRefGoogle Scholar
  31. 31.
    Auerbach R, Kubai L, Knighton D et al (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41:391–394PubMedCrossRefGoogle Scholar
  32. 32.
    Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38:237–248PubMedCrossRefGoogle Scholar
  33. 33.
    Ribatti D, Vacca A, Roncali L et al (2000) The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Curr Pharm Biotechnol 1:73–82PubMedCrossRefGoogle Scholar
  34. 34.
    Ribatti D (2008) The chick embryo chorioallantoic membrane in the study of tumor angiogenesis. Rom J Morphol Embryol 49:131–135PubMedGoogle Scholar
  35. 35.
    Seidlitz E, Korbie D, Marien L et al (2004) Quantification of anti-angiogenesis using the capillaries of the chick chorioallantoic membrane demonstrates that the effect of human angiostatin is agedependent. Microvasc Res 67:105–116PubMedCrossRefGoogle Scholar
  36. 36.
    Narita K, Staub J, Chien J et al (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66:6025–6032PubMedCrossRefGoogle Scholar
  37. 37.
    Nishikawa T, Akiyama N, Kunimasa K et al (2006) Inhibition of in vivo angiogenesis by N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine. Eur J Pharmacol 539:151–157PubMedCrossRefGoogle Scholar
  38. 38.
    Berndt S, Perrier d’Hauterive S, Blacher S et al (2006) Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. Faseb J 20:2630–2632PubMedCrossRefGoogle Scholar
  39. 39.
    Martinez-Poveda B, Munoz-Chapuli R, Rodriguez-Nieto S et al (2007) IB05204, a di chloropy ridodithienotriazine, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 6:2675–2685PubMedCrossRefGoogle Scholar
  40. 40.
    Park K, Kim YS, Lee GY et al (2007) Antiangiogenic effect of bile acid acylated heparin derivative. Pharm Res 24:176–185PubMedCrossRefGoogle Scholar
  41. 41.
    Guedez L, Rivera AM, Salloum R et al (2003) Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. Am J Pathol 162:1431–1439PubMedGoogle Scholar
  42. 42.
    Chu J, Lloyd FL, Trifan OC et al (2003) Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer. Mol Cancer Ther 2:1–7PubMedGoogle Scholar
  43. 43.
    Gimbrone MA Jr, Cotran RS, Leapman SB, Folkman J et al (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413–427PubMedGoogle Scholar
  44. 44.
    Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2:2545–2550PubMedCrossRefGoogle Scholar
  45. 45.
    Shen J, Vil MD, Zhang H et al (2007) An antibody directed against PDGF receptor beta enhances the antitumor and the anti-angiogenic ac tivities of an anti-VEGF receptor 2 antibody. Biochem Biophys Res Commun 357:1142–1147PubMedCrossRefGoogle Scholar
  46. 46.
    Ma J, Waxman DJ (2008) Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther 7:79–89PubMedCrossRefGoogle Scholar
  47. 47.
    Salvador C, Li B, Hansen R et al (2008) Yeast-derived beta-glucan augments the therapeutic efficacy mediated by anti-vascular endothelial growth factor monoclonal antibody in human carcinoma xenograft models. Clin Cancer Res 14:1239–1247PubMedCrossRefGoogle Scholar
  48. 48.
    Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567–1572PubMedCrossRefGoogle Scholar
  49. 49.
    Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedCrossRefGoogle Scholar
  50. 50.
    Veikkola T, Alitalo K (1999) VEGFs, receptors and angiogenesis. Semin Cancer Biol 9:211–220PubMedCrossRefGoogle Scholar
  51. 51.
    Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69Suppl 3:11–16PubMedCrossRefGoogle Scholar
  52. 52.
    Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725PubMedCrossRefGoogle Scholar
  53. 53.
    Motoike T, Loughna S, Perens E et al (2000) Universal GFP reporter for the study of vascular development. Genesis 28:75–81PubMedCrossRefGoogle Scholar
  54. 54.
    Hillen F, Kaijzel EL, Castermans K et al (2008) A transgenic Tie2-GFP athymic mouse model; a tool for vascular biology in xenograft tumors. Biochem Biophys Res Commun 368:364–367PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Y, Iyer M, Annala A et al (2006) Noninvasive indirect imaging of vascular endothelial growth factor gene expression using bioluminescence imaging in living transgenic mice. Physiol Genomics 24:173–180PubMedGoogle Scholar
  56. 56.
    Zhang N, Fang Z, Contag PR et al (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103:617–626PubMedCrossRefGoogle Scholar
  57. 57.
    Hoffman RM (2004) Imaging tumor angiogenesis with fluorescent proteins. APMIS 112:441–449PubMedCrossRefGoogle Scholar
  58. 58.
    Amoh Y, Yang M, Li L et al (2005) Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res 65:5352–5357PubMedCrossRefGoogle Scholar
  59. 59.
    Faley SL, Takahashi K, Crooke CE et al (2007) Bioluminescence imaging of vascular endothelial growth factor promoter activity in murine mammary tumorigenesis. Mol Imaging 6:331–339PubMedGoogle Scholar
  60. 60.
    Jimenez B, Volpert OV, Crawford SE et al (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48PubMedCrossRefGoogle Scholar
  61. 61.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62PubMedCrossRefGoogle Scholar
  62. 62.
    Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8:309–316PubMedCrossRefGoogle Scholar
  63. 63.
    Duda DG, Batchelor TT, Willett CG et al (2007) VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med 13:223–230PubMedCrossRefGoogle Scholar
  64. 64.
    Larkin JM, Chowdhury S, Gore ME (2007) Drug insight: advances in renal cell carcinoma and the role of targeted therapies. Nat Clin Pract Oncol 4:470–479PubMedCrossRefGoogle Scholar
  65. 65.
    Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:1329–1338PubMedCrossRefGoogle Scholar
  66. 66.
    Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147PubMedCrossRefGoogle Scholar
  67. 67.
    Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95PubMedCrossRefGoogle Scholar
  68. 68.
    Weidner N (2004) The importance of tumor angiogenesis: the evidence continues to grow. Am J Clin Pathol 122:675–677PubMedCrossRefGoogle Scholar
  69. 69.
    Bamberger ES, Perrett CW (2002) Angiogenesis in epithelian ovarian cancer. Mol Pathol 55:348–359PubMedCrossRefGoogle Scholar
  70. 70.
    Leek RD (2001) The prognostic role of angiogenesis in breast cancer. Anticancer Res 21:4325–4331PubMedGoogle Scholar
  71. 71.
    Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893PubMedGoogle Scholar
  72. 72.
    Willett CG, Boucher Y, Duda DG et al (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23:8136–8139PubMedCrossRefGoogle Scholar
  73. 73.
    Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201PubMedCrossRefGoogle Scholar
  74. 74.
    Rafii S, Lyden D, Benezra R et al (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835PubMedCrossRefGoogle Scholar
  75. 75.
    Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395PubMedCrossRefGoogle Scholar
  76. 76.
    Guba M, Seeliger H, Kleespies A et al (2004) Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis 19:510–517PubMedCrossRefGoogle Scholar
  77. 77.
    Gasparini G (2001) Clinical significance of determination of surrogate markers of angiogenesis in breast cancer. Crit Rev Oncol Hematol 37:97–114PubMedCrossRefGoogle Scholar
  78. 78.
    Kammula US, Kuntz EJ, Francone TD et al (2007) Molecular co-expression of the c-Met oncogene and hepatocyte growth factor in primary colon cancer predicts tumor stage and clinical outcome. Cancer Lett 248:219–228PubMedCrossRefGoogle Scholar
  79. 79.
    Iwasaki A, Kuwahara M, Yoshinaga Y et al (2004) Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) levels, as prognostic indicators in NSCLC. Eur J Cardiothorac Surg 25:443–448PubMedCrossRefGoogle Scholar
  80. 80.
    Masuya D, Huang C, Liu D et al (2004) The tumour-stromal interaction between intratumoral c-Met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br J Cancer 90:1555–1562PubMedCrossRefGoogle Scholar
  81. 81.
    Jakob C, Sterz J, Zavrski I et al (2006) Angiogenesis in multiple myeloma. Eur J Cancer 42:1581–1590PubMedCrossRefGoogle Scholar
  82. 82.
    Kumar H, Heer K, Greenman J et al (2002) Soluble FLT-1 is detectable in the sera of colorectal and breast cancer patients. Anticancer Res 22: 1877–1880PubMedGoogle Scholar
  83. 83.
    Byrne GJ, Ghellal A, Iddon J et al (2000) Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J Natl Cancer Inst 92:1329–1336PubMedCrossRefGoogle Scholar
  84. 84.
    Qin LX, Tang ZY (2002) The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 8:385–392PubMedGoogle Scholar
  85. 85.
    Opala T, Drews K, Rzymski P et al (2003) Evaluation of soluble intracellular adhesion molecule-1 (sICAM-1) in benign and malignant ovarian masses. Eur J Gynaecol Oncol 24:255–257PubMedGoogle Scholar
  86. 86.
    Li H, Gerald WL, Benezra R (2004) Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res 64:6137–6143PubMedCrossRefGoogle Scholar
  87. 87.
    Mancuso P, Calleri A, Cassi C et al (2003) Circulating endothelial cells as a novel marker of angiogenesis. Adv Exp Med Biol 522:83–97PubMedGoogle Scholar
  88. 88.
    Furstenberger G, von Moos R, Lucas R et al (2006) Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 94: 524–531PubMedCrossRefGoogle Scholar
  89. 89.
    Norden-Zfoni A, Desai J, Manola J et al (2007) Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res 13:2643–2650PubMedCrossRefGoogle Scholar
  90. 90.
    Blann AD, Woywodt A, Bertolini F et al (2005) Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 93:228–235PubMedGoogle Scholar
  91. 91.
    Naik RP, Jin D, Chuang E et al (2008) Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat 107:133–138PubMedCrossRefGoogle Scholar
  92. 92.
    Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110:534–542PubMedCrossRefGoogle Scholar
  93. 93.
    Zheng PP, Hop WC, Luider TM et al (2007) Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann Neurol 62:40–48PubMedCrossRefGoogle Scholar
  94. 94.
    Igreja C, Courinha M, Cachaco AS et al (2007) Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica 92: 469–477PubMedCrossRefGoogle Scholar
  95. 95.
    Capillo M, Mancuso P, Gobbi A et al (2003) Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 9:377–382PubMedGoogle Scholar
  96. 96.
    Duda DG, Cohen KS, Scadden DT et al (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810PubMedCrossRefGoogle Scholar
  97. 97.
    Miller JC, Pien HH, Sahani D et al (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Institute 97: 172–187CrossRefGoogle Scholar
  98. 98.
    Perini R, Choe R, Yodh AG et al (2008) Non-invasive assessment of tumor neovasculature: techniques and clinical applications. Cancer Metastasis Rev [Epub ahead of print]Google Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  • José L. Orgaz
    • 1
  • Beatriz Martínez-Poveda
    • 1
  • Nuria I. Fernández-García
    • 1
  • Benilde Jiménez
    • 1
    Email author
  1. 1.Department of BiochemistryUniversidad Autónoma de Madrid Instituto de Investigaciones Biomédicas CSIC-UAMMadridSpain

Personalised recommendations