Skip to main content
Log in

Non-invasive genetic imaging for molecular and cell therapies of cancer

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gene therapy is a very attractive strategy in experimental cancer therapy. Ideally, the approach aims to deliver therapeutic genes selectively to cancer cells. However, progress in the improvement of gene therapy formulations has been hampered by difficulties in measuring transgene delivery and in quantifying transgene expression in vivo. In clinical trials, endpoints rely almost exclusively on the analysis of biopsies, which provide limited information. Non-invasive monitoring of gene delivery and expression is a very attractive approach as it can be repeated over time in the same patient to provide spatiotemporal information on gene expression on a whole body scale. Thus, imaging methods can uniquely provide researchers and clinicians the ability to directly and serially assess morphological, functional and metabolic changes consequent to molecular and cellular based therapies. This review highlights the various methods currently being developed in preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui Y, Golob J, Kelleher E et al (2002) Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 99:399–408

    Article  PubMed  CAS  Google Scholar 

  2. Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  3. Green LA, Yap CS, Nguyen K et al (2001) Indirect monitoring of endogenous gene expression by Positron Emission Tomography (PET) imaging of reporter gene expression in transgenic mice. Mol Imag Biol 4:71–81

    Article  Google Scholar 

  4. Jacobs A, Voges J, Reszka R et al (2001) Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358:727–729

    Article  PubMed  CAS  Google Scholar 

  5. Liang Q, Satyamurthy N, Barrio JR et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498

    Article  PubMed  CAS  Google Scholar 

  6. Benali N, Cordelier P, Calise D et al (2000) Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc Natl Acad Sci U S A 97:9180–9185

    Article  PubMed  CAS  Google Scholar 

  7. DePuey EG (1996) New applications of myocardial perfusion imaging. Tex Heart Inst J 23:2

    Google Scholar 

  8. Gambhir S, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG-PET literature. J Nucl Med 42:1S–71S

    PubMed  CAS  Google Scholar 

  9. Elion GB (1993) Acyclovir: discovery, mechanism of action, and selectivity. J Med Virol [Suppl 1]:2–6

    Google Scholar 

  10. Banerjee D (1999) Technology evaluation: gene therapy (mesothelioma), NCI. Curr Opin Mol Ther 1:517–520

    PubMed  CAS  Google Scholar 

  11. Tjuvajev JG, Avril N, Oku T et al (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    PubMed  CAS  Google Scholar 

  12. Bennett JJ, Tjuvajev J, Johnson P et al (2001) Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat Med 7:859–863

    Article  PubMed  CAS  Google Scholar 

  13. Hackman T, Dubrovin M, Balatoni J et al (2002) Monitoring E. coli cytosine deaminase gene expression by noninvasive imaging of the HSV-1-tk marker gene: potential clinical applications in cancer gene therapy. Mol Imaging 1:36–42

    Article  PubMed  CAS  Google Scholar 

  14. Vassaux G, Martín-Duque P (2004) Use of suicide genes for cancer gene therapy: study of the different approaches. Expert Opin Biol Ther 4: 519–530

    Article  PubMed  CAS  Google Scholar 

  15. Qiao J, Doubrovin M, Sauter BV et al (2002) Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 9:168–175

    Article  PubMed  CAS  Google Scholar 

  16. Hackman T, Doubrovin M, Balatoni J et al (2002) Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 1:36–42

    Article  PubMed  CAS  Google Scholar 

  17. McLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  Google Scholar 

  18. Liang Q, Satyamurthy N, Barrio JR et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498

    Article  PubMed  CAS  Google Scholar 

  19. Gambhir SS, Herschman HR, Cherry SR et al (2000) Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2:118–138

    Article  PubMed  CAS  Google Scholar 

  20. Bogdanov AA, Lewin M, Weissleder R (1999) Approaches and agents for imaging the vascular system. Adv Drug Deliv Rev 37:279–293

    Article  PubMed  CAS  Google Scholar 

  21. Schellingerhout D, Rainov NG, Breakefield XO, Weissleder R (2000) Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Ther 7:1648–1655

    Article  PubMed  CAS  Google Scholar 

  22. Zinn KR, Chaudhuri TR (2002) The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 29:388–399

    Article  PubMed  CAS  Google Scholar 

  23. Doubrovin M (2001) Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 98:9300–9305

    Article  PubMed  CAS  Google Scholar 

  24. Groot-Wassink T, Aboagye EO, Wang Y et al (2004) Noninvasive imaging of the transcriptional promoter fragments in mice. Cancer Res 64:4906–4911

    Article  PubMed  CAS  Google Scholar 

  25. Merron A, Peerlinck I, Martín-Duque P et al (2007) SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the Na/I symporter as a reporter gene. Gene Therapy (in press)

  26. Benaron DA, Contag RR, Contang CH (1997) Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond B Biol Sci 352:755–761

    Article  PubMed  CAS  Google Scholar 

  27. Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66:523–531

    PubMed  CAS  Google Scholar 

  28. Contag CH, Bachman MH (2002) Advances in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  29. Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  PubMed  CAS  Google Scholar 

  30. Contag CH, Contag PR, Mullins JI et al (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18:593–603

    Article  PubMed  CAS  Google Scholar 

  31. Lockley M, Fernandez M, Wang Y et al (2006) Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in Icodextrin. Cancer Res 66:990–998

    Article  Google Scholar 

  32. Rehemtulla A, Stegman LD, Cardozo SJ et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    Article  PubMed  CAS  Google Scholar 

  33. Edinger M, Sweeney TJ, Tucker AA et al (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1:303–310

    Article  PubMed  CAS  Google Scholar 

  34. Edinger M, Cao YA, Hornig YS et al (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38:2128–2136

    Article  PubMed  CAS  Google Scholar 

  35. Wetterwald A, van der Pluijm G, Que I et al (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153

    PubMed  Google Scholar 

  36. Shah K, Tang Y, Breakefield XO, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22:6865–6872

    Article  PubMed  CAS  Google Scholar 

  37. Shah K, Jacobs A, Breakefield XO, Weissleder R (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11:1175–1187

    Article  PubMed  CAS  Google Scholar 

  38. Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4:143–164

    PubMed  Google Scholar 

  39. Weissleder R, Cheng HC, Bogdanova A, Bogdanova A Jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Med Imag 7:258–263

    Article  CAS  Google Scholar 

  40. Franklin RJ, Blaschuk KL, Bearchell MC et al (1999) Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10:3961–3965

    Article  PubMed  CAS  Google Scholar 

  41. de Vries IJM, Lesterhuis JW, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma cells for monitoring cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  42. Bulte JW, Ma LD, Magin R et al (1993) Selective MR imaging of labelled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29:32–37

    Article  PubMed  CAS  Google Scholar 

  43. Josephsen L, Tung CH, Moore A, Weissleder R (1999) High efficiency intracellular magnetic labelling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  Google Scholar 

  44. Bulte JWM, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labelled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A 96:15256–15261

    Article  PubMed  CAS  Google Scholar 

  45. Wilhelm C, Billotey C, Roger J et al (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011

    Article  PubMed  CAS  Google Scholar 

  46. Frank JA, Zywicke H, Jordan EK et al (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9:S484–488

    Article  PubMed  Google Scholar 

  47. Daldrup-Link HE, Rudellus M, Oostendorp RA et al (2003) Targeting of haematopoetic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  48. Giesel FL, Stroick M, Griebe M et al (2006) Gadofluorine M uptake in stem cells as a new magnetic resonance imaging tracking method. Invest Radiol 41:868–873

    Article  PubMed  CAS  Google Scholar 

  49. Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stems cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99: 16267–16272

    Article  PubMed  CAS  Google Scholar 

  50. Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101:10901–10906.

    Article  PubMed  CAS  Google Scholar 

  51. Navon G, Panigel R, Valensin G (1986) Liposomes containing paramagnetic macromolecules as MRI contrast agents. Magn Reson Med 3: 876–880

    Article  PubMed  CAS  Google Scholar 

  52. Pirko I, Johnson A, Ciric B et al (2004) In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 18:179–182

    PubMed  CAS  Google Scholar 

  53. Moore A, Medarova Z, Potthast A, Dai G (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827

    Article  PubMed  CAS  Google Scholar 

  54. Bulte JW, Hoekstra Y, Kamman RL et al (1992) Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 25:148–157

    Article  PubMed  CAS  Google Scholar 

  55. So PW, Kalber T, Herlihy AH, Bell JD (2006) Chemical biotinylation of cells for molecular imaging and cell tracking. Proc Int Soc Mag Med 14:1870

    Google Scholar 

  56. Räty JR, Liimatainen T, Wirth T et al (2006) Magnetic resonance imaging of viral particle biodistribution in vivo. Gene Therapy 13:1440

    Article  PubMed  Google Scholar 

  57. Allen M, Bulte JWM, Liepold L et al (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54:807

    Article  PubMed  CAS  Google Scholar 

  58. Anderson EA, Isaacman S, Peabody DS et al (2006) Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6:1160

    Article  PubMed  CAS  Google Scholar 

  59. Mulder JW, Strijkers GJ, Habets JW et al (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008

    PubMed  CAS  Google Scholar 

  60. Kang HW, Josephsen L, Petrovsky A et al (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13:122

    Article  PubMed  CAS  Google Scholar 

  61. Kang HW, Torres D, Wald L et al (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599

    PubMed  CAS  Google Scholar 

  62. Sipkins DA, Cheresh DA, Kazemi MR et al (1998) Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med 4:623

    Article  PubMed  CAS  Google Scholar 

  63. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351

    Article  PubMed  CAS  Google Scholar 

  64. Ichikawa T, Högemann D, Saeki Y et al (2002) Free content MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4:523–530

    Article  PubMed  CAS  Google Scholar 

  65. Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454

    Article  PubMed  CAS  Google Scholar 

  66. Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117

    Article  PubMed  CAS  Google Scholar 

  67. Louie AY, Hüber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotech 18:321–325

    Article  CAS  Google Scholar 

  68. Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of Tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13:840–844

    Article  PubMed  CAS  Google Scholar 

  69. Weissleder R, Simonva M, Bogdanova A et al (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429

    PubMed  CAS  Google Scholar 

  70. Riley PA (2003) Melanogenesis and melanoma. Pigment Cell Res 16:548–552

    Article  PubMed  CAS  Google Scholar 

  71. Alfke H, Stoppler H, Nockern F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228:488–492

    Article  PubMed  Google Scholar 

  72. So PW, Hotee S, Herlihy AH, Bell JD (2005) Generic method for imaging transgene expression. Magn Reson Med 54:218–221

    Article  PubMed  CAS  Google Scholar 

  73. Tannous BA, Grimm J, Perry KF et al (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3:391–396

    Article  PubMed  CAS  Google Scholar 

  74. Madio D, Van-Gelderen P, DesPres D et al (1998) Invited. On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J Magn Reson Imaging 8:101–104

    Article  PubMed  CAS  Google Scholar 

  75. Tang M, Redemann C, Szoka F (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  PubMed  CAS  Google Scholar 

  76. Qui B, El-Sharkawy AM, Paliwal V et al (2004) Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system. Magn Reson Med 54:226–230

    Google Scholar 

  77. Gao F, Qiu B, Kar S et al (2006) Intravascular magnetic resonance/radiofrequency may enhance gene therapy for prevention of in-stent neointimal hyperplasia. Acad Radiol 13:526–530

    Article  PubMed  Google Scholar 

  78. Yang X, Atalar E, Li D et al (2001) Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 104:1588–1590

    Article  PubMed  CAS  Google Scholar 

  79. Lawrie A, Brisken A, Francis S et al (1999) Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation 99:2617–2620

    PubMed  CAS  Google Scholar 

  80. Ernst S, Ouyang F, Linder C et al (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation 109:1472–1475

    Article  PubMed  Google Scholar 

  81. Thornton AS, Janse P, Theuns DA et al (2006) Magnetic navigation in AV nodal re-entrant tachycardia study: early results of ablation with one-and three-magnet catheters. Europace 8:225–230

    Article  PubMed  CAS  Google Scholar 

  82. Tallheden T, Nannmark U, Lorentzon M et al (2006) In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79:999–1006

    Article  PubMed  CAS  Google Scholar 

  83. Arbab AS, Jordan EK, Wilson LB et al (2004) In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 15: 351–360

    Article  PubMed  CAS  Google Scholar 

  84. Fodor PJ, Tomashefsky P, Funk C (1957) Enzyme levels in the growing and spontaneously regressing Flexner-Jobling carcinoma. II. ATPase and glycolysis. Arch Biochem Biophys 71(2): 403–413

    Article  PubMed  CAS  Google Scholar 

  85. Wang S, Mintz A, Mochizuki K et al (2007) Multimodality optical imaging and 18F-FDG uptake in wild-type p53-containing and p53-null human colon tumor xenografts. Cancer Biol Ther 6(10) (in press)

  86. Kettunen MI, Gröhn OHJ (2005) Tumour gene therapy monitoring using magnetic resonance imaging and spectroscopy. Current Gene Ther 5:685–696

    Article  CAS  Google Scholar 

  87. Walter G, Cordier L, Bloy D, Sweeney HL (2005) Noninvasive monitoring of gene correction in dystrophic muscle. Magn Reson Med 54: 1369–1376

    Article  PubMed  Google Scholar 

  88. Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233

    Article  PubMed  CAS  Google Scholar 

  89. Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681

    PubMed  CAS  Google Scholar 

  90. Gulec SA, Hoenie E, Hostetter R, Schwartzentruber D (2007) PET probe-guided surgery: applications and clinical protocol. World J Surg Oncol 5:65

    Article  PubMed  Google Scholar 

  91. Blasberf RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111:1620–1629

    Article  Google Scholar 

  92. Serganova I, Ponomarev V, Blasberg R (2007) Human reporter genes: potential use in clinical studies. Nucl Med Biol 34:791–807

    Article  PubMed  CAS  Google Scholar 

  93. Chao H, Mansfield SG, Bartel RC et al (2003) Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing. Nat Med 9:1015–1019

    Article  PubMed  CAS  Google Scholar 

  94. Liu X, Jiang Q, Mansfield SG et al (2002) Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol 20:47–52

    PubMed  CAS  Google Scholar 

  95. Bhaumik S, Walls Z, Puttaraju M et al (2004) Molecular imaging of gene expression in living subjects by spliceosome-mediated RNA transsplicing. Proc Natl Acad Sci U S A 23:8693–8698

    Article  Google Scholar 

  96. Söling A, Simm A, Rainov NG (2002) Intracellular localization of Herpes simplex virus type I thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Lett 527:153–158

    Article  PubMed  Google Scholar 

  97. Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63:1160–1165

    PubMed  CAS  Google Scholar 

  98. Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent and nuclear non-invasive imaging. Eur J Nucl Med Mol Imaging 31:740–751

    Article  PubMed  CAS  Google Scholar 

  99. Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Martín-Duque.

Additional information

Supported by an unrestricted educational grant from Roche Farma S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmar, C., So, P.W., Vassaux, G. et al. Non-invasive genetic imaging for molecular and cell therapies of cancer. Clin Transl Oncol 9, 703–714 (2007). https://doi.org/10.1007/s12094-007-0127-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0127-z

Key words

Navigation