Skip to main content

Advertisement

Log in

Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Epidemiological studies provided the first evidence that COX may be involved in the pathogenesis of cancer. In the process of carcinogenesis and in the route of intracellular signalling during carcinogenesis, COX-2 expression may be a universal phenomenon. In general, COX-2 is up-regulated throughout the tumorigenic process, from early hyperplasia to metastatic disease. COX-2 has been reported to be constitutively overexpressed in a variety of malignancies and is frequently constitutively elevated in prostate carcinoma. COX-2 was consistently overexpressed in premalignant lesions such as prostatic intraepithelial neoplasia, and carcinoma. Cases are described with evolution of proliferative inflammatory atrophy of the prostate and prostate carcinoma. The increase of evidence implicating COX-2 in cancer has stimulated clinical trials to investigate the efficacy of selective COX-2 inhibitors in individuals at risk for human cancer. Regarding prostate carcinoma there is much direct or indirect evidence to support the use of COX-2 inhibitors in this disease. Trials using these drugs in familial adenomatous polyposis (FAP) and other patients with a high risk of colorectal carcinoma are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tremblay C, Dore M, Bochsler PN, Sirois J (1999) Induction of prostaglandin G/H synthase in a canine model of spontaneous prostatic adenocarcinoma. J Natl Cancer Inst 91:1398–1403

    Article  PubMed  CAS  Google Scholar 

  2. Gupta S, Srivastava M, Ahmad N et al (2000) Overexpression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42:73–79

    Article  PubMed  CAS  Google Scholar 

  3. Kirschenbaum A, Klausner AP, Lee R et al (2000) Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56:671–676

    Article  PubMed  CAS  Google Scholar 

  4. Madaan S, Abel PD, Chaudhary DS et al (2000) Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 86:736–741

    Article  PubMed  CAS  Google Scholar 

  5. Tanji N, Kikugawa T, Yokoyama M (2000) Immunohistochemical study of cyclooxygenases in prostatic adenocarcinoma; relationship to apoptosis and Bcl-2 protein expression. Anticancer Res 20:2313–2319

    PubMed  CAS  Google Scholar 

  6. Zha S, Gage WR, Sauvageot J et al (2001) Cyclooxygenase-2 is upregulated in proliferative inflammatory atrophy of the prostate, but not in prostate, but not in prostate carcinoma. Cancer Res 61:8617–8623

    PubMed  CAS  Google Scholar 

  7. Shappell SB, Manning S, Boeglin WE et al (2001) Alterations in lipoxygenase and cyclooxygenase-2 catalytic and mRNA expression in prostate carcinoma. Neoplasia 3:287–303

    Article  PubMed  CAS  Google Scholar 

  8. Nie D, Hillman GG, Geddes T et al (1998) Platelet-type 12-lipoxyenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Res 58:4047–4051

    PubMed  CAS  Google Scholar 

  9. Timar J, Raso E, Dome B et al (2000) Expression, subcellular localization and putative function of platelet-type 12-lipoxygenase in human prostate cancer cell lines of different metastatic potential. Int J Cancer 87:37–43

    Article  PubMed  CAS  Google Scholar 

  10. Tjandrawinata RR, Dahya R, Hughes-Fulford M (1997) Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 75:1111–1118

    PubMed  CAS  Google Scholar 

  11. Rose DP, Connolly JM (1991) Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. Prostate 18:243–254

    Article  PubMed  CAS  Google Scholar 

  12. Nolan RD, Danilowicz RM, Eling TE (1988) Role of arachidonic acid metabolism in the mitogenic response of BALB/c 3T3 fibroblasts to epidermal growth factor. Mol Pharmacol 33: 650–656

    PubMed  CAS  Google Scholar 

  13. Glasgow WC, Wling TE (1989) Involvement of linoleic acid metabolites in epidermal growth factor-stimulated mitogenesis in BALB/c-3T3 fibroblast. Proc Am Assoc Cancer Res 30:102

    Google Scholar 

  14. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851

    PubMed  CAS  Google Scholar 

  15. Zhuang L, Lin J, Lu ML et al (2002) Cholesterolrich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62:2227–2231

    PubMed  CAS  Google Scholar 

  16. Yoshimura R, Sano H, Masuda C et al (2000) Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89:589–596

    Article  PubMed  CAS  Google Scholar 

  17. Gao X, Grignon DJ, Chbihi T et al (1995) Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 46:227–237

    Article  PubMed  CAS  Google Scholar 

  18. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  19. Honn KV, Tang DG, Gao X et al (1994) 12-Lipoxygenases and 12(S)-HETE in cancer metastasis. Cancer Metastasis Rev 13:365–396

    Article  PubMed  CAS  Google Scholar 

  20. Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188

    PubMed  CAS  Google Scholar 

  21. Sano H, Kawahito Y, Wilder RL et al (1995) Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res 55:3785–3789

    PubMed  CAS  Google Scholar 

  22. Chan TA, Morin PJ, Vogelstein B, Kinzler KW (1998) Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci U S A 95:681–686

    Article  PubMed  CAS  Google Scholar 

  23. Sheng H, Shao J, Morrow JD et al (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58:362–366

    PubMed  CAS  Google Scholar 

  24. Liu XH, Yao S, Kirschenbaum A, Levine AC (1998) NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res 58:4245–4249

    PubMed  CAS  Google Scholar 

  25. Hsu AL, Ching TT, Wang DS et al (2000) The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403

    Article  PubMed  CAS  Google Scholar 

  26. Johnson AJ, Song X, Hsu A, Chen C (2001) Apoptosis signalling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cell. Adv Enzyme Regul 41:221–235

    Article  PubMed  CAS  Google Scholar 

  27. Song X, Lin HP, Johnson AJ et al (2002) Cyclooxygenase-2 player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 94: 585–591

    PubMed  CAS  Google Scholar 

  28. Zhu J, Song X, Lin HP et al (2002) Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94:1745–1757

    PubMed  CAS  Google Scholar 

  29. Kulp SK, Yang YT, Hung CC et al (2004) 3-Phosphoinositide-dependent protein kinase-1/Akt signalling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444–1451

    Article  PubMed  CAS  Google Scholar 

  30. Patel MI, Subbaramaiah K, Du B et al (2005) Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 11:1999–2001

    Article  PubMed  CAS  Google Scholar 

  31. Narayanan BA, Narayanan NK, Pttman B, Reddy BS (2006) Adenocarcinoma of the mouse growth inhibition by celecoxib: down regulation of transcription factors involved in COX-2 inhibition. Prostate 66:257–265

    Article  PubMed  CAS  Google Scholar 

  32. Sweeney C, Li L, Shanmugam R et al (2004) Nuclear factor/kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Cancer Res 10:5501–5507

    Article  PubMed  CAS  Google Scholar 

  33. Pan Y, Zhang JS, Gazi MH, Young CYF (2003) The cyclooxygenase 2-specific nonsteroidal anti-inflammatory drugs celecoxib and nimesulide inhibit androgen receptor activity via induction of c-Jun in prostate cancer cells. Cancer Epidemiol Biomarkers Prev 12:769–774

    PubMed  CAS  Google Scholar 

  34. Murtha PE, Zhu W, Zhang J et al (1997) Effects of Ca++ mobilization on expression of androgen-regulated genes: interference with androgen receptor-mediated transactivation by AP-I proteins. Prostate 33:264–270

    Article  PubMed  CAS  Google Scholar 

  35. Schule R, Rangarajan P, Kliewer S et al (1990) c-Jun and the glucocorticoid receptor. Cell 62:1217–1226

    Article  PubMed  CAS  Google Scholar 

  36. Sato N, Sadar MD, Bruchovsky N et al (1997) Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem 272:17485–17494

    Article  PubMed  CAS  Google Scholar 

  37. Fronsdal K, Engedal N, Slagsvold T, Saatcioglu F (1998) CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. [erratum appears in J Biol Chem 1999; 274:25188.] J Biol Chem 273:31853–31859

    Article  PubMed  CAS  Google Scholar 

  38. Wagner EF (2001) AP-1: introductory remarks. Oncogene 20:2334–2335

    Article  PubMed  CAS  Google Scholar 

  39. Steinbach G, Lynch PM, Phillips RK et al (2000) The effect of celecoxib a cycloxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    Article  PubMed  CAS  Google Scholar 

  40. Howe LR, Subbaramaiah K, Brown AM, Dannenberg AJ (2001) Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer 8:97–114

    Article  PubMed  CAS  Google Scholar 

  41. Uotila P, Valve E, Martikainen P et al (2001) Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res 29:23–28

    Article  PubMed  CAS  Google Scholar 

  42. Zha S, Gage WR, Sauwageot J et al (2001) Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 61:8617–8623

    PubMed  CAS  Google Scholar 

  43. Shappell SB, Manning S, Boeglin WE et al (2001) Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 3:287–303

    Article  PubMed  CAS  Google Scholar 

  44. Kamijo T, Sato T, Nagatomi Y, Kitamura T (2001) Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines. Int J Urol 8:S35–S39

    Article  PubMed  CAS  Google Scholar 

  45. Liu XH, Kirschenbaun A, Yao S et al (2000) Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 164:820–825

    Article  PubMed  CAS  Google Scholar 

  46. Norrish AE, Jackson RT, McRae CU (1998) Nonsteroidal anti-inflammatory drugs and prostate cancer progression. Int J Cancer 77: 1322–1327

    Article  Google Scholar 

  47. Paganini-Hill A, Chao A, Ross RK, Henderson BE (1989) Aspirin use and chronic diseases: a cohort study of the elderly. Br Med J 299:1247–1250

    Article  CAS  Google Scholar 

  48. Thun MJ, Namboodiri MM, Calle EE et al (1993) Aspirin use and risk of fatal cancer. Cancer Res 53:1322–1327

    PubMed  CAS  Google Scholar 

  49. Rose P, Connolly JM (1991) Effects of fatty acids and eicosanoid synthesis inhibitors on the growth of two human prostate cancer cell lines. Prostate 18:243–254

    Article  PubMed  CAS  Google Scholar 

  50. Chaudry AA, Wahle KWJ, McClinton S, Moffat LEF (1994) Arachidonic acid metabolism in benign and malignant prostatic tissue in vitro: effects of fatty acids and cyclooxygenase inhibitors. Int J Cancer 57:176–180

    Article  PubMed  CAS  Google Scholar 

  51. Viljoen TC, van Aswegen CH, du Plessis DJ (1995) Influence of acetylsalicylic acid and metabolites on DU-145 prostatic cancer cell proliferation. Oncology 52:465–469

    Article  PubMed  CAS  Google Scholar 

  52. Tjandrawinata RR, Dahiya R, Hughes-Fulford M (1997) Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 75:1111–1118

    PubMed  CAS  Google Scholar 

  53. Goluboff ET, Prager D, Rukstalis D et al (2001) Safety and efficacy of exisulind for treatment of recurrent prostate cancer after radical prostatectomy. J Urol 166:882–886

    Article  PubMed  CAS  Google Scholar 

  54. Ridgeon GH, Kandonz M, Meram A, Honn KV (2002) Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 62:2721–2727

    Google Scholar 

  55. Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor κB and nuclear factor-interleukin-6 in the tumor necrosis factor α-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270:31315–3132

    Article  PubMed  CAS  Google Scholar 

  56. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB (1999) Sulindac inhibits activation of the NF-κB pathway. J Biol Chem 274:27307–27314

    Article  PubMed  CAS  Google Scholar 

  57. Lehmann JM, Lenhard JM, Oliver BB et al (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272:3406–3410

    Article  PubMed  CAS  Google Scholar 

  58. Keller H, Dreyer C, Mdin J et al (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferators-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164

    Article  PubMed  CAS  Google Scholar 

  59. Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligand for peroxisome proliferators-activated receptors α and γ. Proc Natl Acad Sci U S A 94:4312–4317

    Article  PubMed  CAS  Google Scholar 

  60. Kliewer SA, Sundseth SS, Jones SA et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci U S A 94:4318–4323

    Article  PubMed  CAS  Google Scholar 

  61. Subbaramiah D, Hart JC, Norton L, Dannenberg AJ (2000) Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of ERK1/2 and p38 mitogen-activated protein kinase pathways. J Biol Chem 275:14838–14845

    Article  Google Scholar 

  62. Liu QY, Stein CA (1997) Taxol and estramustine-induced modulation of human prostate cancer cell apoptosis via alteration in bcl-xL and bak expression. Clin Cancer Res 3:2039–2046

    PubMed  CAS  Google Scholar 

  63. Dandekar DS, Lopez M, Carey RI, Lokeshwas BL (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and-9 in prostate cancer cells. Int J Cancer 115:484–492

    Article  PubMed  CAS  Google Scholar 

  64. Hadlehurst LA, Landowski TH, Dalton WS (2003) Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 22:7396–7402

    Article  CAS  Google Scholar 

  65. Pinski J, Parikh A, Bova GS, Isaacs JT (2001) Therapeutic implications of enhanced G(0)/G(1) checkpoint control induced by cocultured of prostate cancer cells with osteoblasts. Cancer Res 61:6372–6376

    PubMed  CAS  Google Scholar 

  66. Scher HI, Sarkis A, Reuter V et al (1995) Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res 1:545–550

    PubMed  CAS  Google Scholar 

  67. Morris MJ, Reuter VE, Kelly WK et al (2002) HER-2 profiling and targeting in prostate carcinoma. Cancer 94:980–986

    Article  PubMed  CAS  Google Scholar 

  68. Mimeault M, Pommery N, Henichart JP (2003) New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system. Growth Factors 21:1–14

    Article  PubMed  CAS  Google Scholar 

  69. Kim HG, Kassis J, Souto JC et al (1999) EGF receptor signaling in prostate morphogenesis and tumorigenesis. Histol Histopathol 14:1175–1182

    PubMed  CAS  Google Scholar 

  70. Putz T, Culig Z, Eder IE et al (1999) Epidermal growth factor (EGF) receptor blockade inhibits the action of EGF, insulin-like growth factor I, and a protein kinase A activator on the mitogenactivated protein kinase pathway in prostate cancer cell lines. Cancer Res 59:227–233

    PubMed  CAS  Google Scholar 

  71. Chen Y, Hughes-Fulford M (2000) Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cells. Br J Cancer 82:2000–2006

    Article  PubMed  CAS  Google Scholar 

  72. Coroneos E, Martinez M, McKenna S, Kester N (1995) Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem 270:23305–23309

    Article  PubMed  CAS  Google Scholar 

  73. Mimeault N, Jouy N, Depreux P, Henichart JP (2005) Synergistic antiproliferative and apoptotic effects induced by mixed epidermal growth factor receptor inhibitor ZD1839 and nitric oxide donor in human prostatic cancer cell lines. Prostate 62:187–199

    Article  PubMed  CAS  Google Scholar 

  74. Narayanan NK, Condon MS, Bosland MC et al (2003) Suppression of N-methyl-N-nitrosourea /testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2 cell cycle regulation, and apoptosis mechanisms (s). Clin Cancer Res 9:3503–3513

    PubMed  CAS  Google Scholar 

  75. Johnson, AJ, Hsu AL, Lin HP et al (2002) The cyclooxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: a plausible link with its anti-tumor effect and cardiovascular risks. Biochem J 366:831–837

    PubMed  CAS  Google Scholar 

  76. Narayanan NK, Narayanan BA, Bosland M et al (2006) Docosahenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells. Int J Cancer 119:1536–1598

    Article  CAS  Google Scholar 

  77. Dannenberg AJ, Lippman SC, Mann JR et al (2005) Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 23:254–266

    Article  PubMed  CAS  Google Scholar 

  78. Choe MS, Zhang X, Shin HJC et al (2005) Interaction between epidermal growth factor receptor-and cyclooxygenase 2-mediated pathways and its implications for the chemoprevention of head and neck cancer. Mol Cancer Ther 4:1448–1455

    Article  PubMed  CAS  Google Scholar 

  79. Carles J, Font A, Mellado B et al (2007) Weekly administration of docetaxel in combination with estramustine and celecoxib in patients with advanced hormone-refractory prostate cancer: final results from a phase II study. Br J Cancer 97:1206–1210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Antón Aparicio.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio Gallego, G., Díaz Prado, S., Jiménez Fonseca, P. et al. Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin Transl Oncol 9, 694–702 (2007). https://doi.org/10.1007/s12094-007-0126-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0126-0

Key words

Navigation