Advertisement

Clinical and Translational Oncology

, Volume 9, Issue 8, pp 531–536 | Cite as

Analysis of fiducial markers used for on-line verification in the external-beam radiotherapy of patients with cranial tumours

  • R. M. CañónEmail author
  • I. Azinovic
  • M. Lobato
  • J. Navarro
  • J. Rebollo
Research Articles

Abstract

Purpose

Evaluate the fiducial marker-based position verification in the external-beam radiotherapy of patients with cranial tumour.

Methods

Thirteen patients with intracranial tumours were treated with external-beam radiotherapy using 3 gold markers implanted in the skull. Before each fraction the patient was positioned on the treatment table and 2 orthogonal portal images were performed to localise the 3 gold seeds and the target position was calculated using a commercialised computer program (ISOLOC software, MEDTEC). This program provides the couch movements required to move the target to the isocentre.

Results

When the set-up error was corrected using the coordinates of the 3 markers, the final movements were less than 2 mm in all cases: lateral, mean v., 1.21 mm; longitudinal, 1.23 mm; and anteroposterior, 1.18 mm. No serious complications related to the gold marker insertion were noted.

Conclusion

The use of 3 implanted fiducial seeds is an optimal technique for precise set-up in patients with brain tumours treated with external radiotherapy. This commercial system is highly suitable for fractionated stereotactic irradiation.

Key words

Fiducial markers Stereotactic radiosurgery Cranial tumour On-line localisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acculoc® implanted fiducial localisation system. www.medtec.comGoogle Scholar
  2. 2.
    Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic radiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  3. 3.
    Stafford SL, Pollock BE, Leavitt JA et al (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55:1177–1181PubMedCrossRefGoogle Scholar
  4. 4.
    Shrieve DC, Hazard L, Boucher K, Jensen RL (2004) Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg 101[4 Suppl]:390–395PubMedGoogle Scholar
  5. 5.
    Vetterli D, Riem H, Aebersold DM et al (2004) Introduction of a novel dose saving acquisition mode for the PortalVisionTM aS500 EPID to facilitate on-line patient setup verification. Med Phys 31:828–831PubMedCrossRefGoogle Scholar
  6. 6.
    Martínez JA, Lobato M, García F et al (2005) Utilización de implantes Fiduciales en Radioterapìa craneal y próstatica con sistema de posicionamiento ACCULOC®. XV Congreso Nacional de Física Médica, Pamplona, JulyGoogle Scholar
  7. 7.
    Loeffler JS, Kooy HM, Wen PY et al (1990) The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clinic Oncol 8:576–582Google Scholar
  8. 8.
    Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedGoogle Scholar
  9. 9.
    Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694PubMedGoogle Scholar
  10. 10.
    Steele G (1997) Basic clinical radiobiology, 2nd Edn. Arnold, LondonGoogle Scholar
  11. 11.
    Flickinger JC, Kondziolka D, Lunsford LD (2003) Radiobiological analysis of tissue responses following radiosurgery. Technol Cancer Res Treat 2:87–92PubMedGoogle Scholar
  12. 12.
    Hall EJ, Brenner DJ (1993) The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 25:381–385PubMedCrossRefGoogle Scholar
  13. 13.
    Nederveen A, Lagendijk J, Hofman P (2000) Detection of fiducial gold markers for automatic on-line megavoltage position verification using a marker extraction kernel (MEK). Int J Radiat Oncol Biol Phys 47:1435–1442PubMedCrossRefGoogle Scholar
  14. 14.
    Shirato H, Harada T, Harabayashi T et al (2003) Feasibility of insertion/implantation of 2.0-mmdiameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys 56:240–247PubMedCrossRefGoogle Scholar
  15. 15.
    Pouliot J, Aubin M, Langen K et al (2003) (Non)-migration of radiopaque markers used for on-line localization of the prostate with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 56:862–866PubMedCrossRefGoogle Scholar
  16. 16.
    Lohr F, Debus J, Frank C et al (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527PubMedCrossRefGoogle Scholar
  17. 17.
    Onimaru R, Shirato H, Aoyama H et al (2002) Calculation of rotational setup error using the real-time tracking radiation therapy (RTRT) system and its application to the treatment of spinal schwannoma. Int J Radiat Oncol Biol Phys 54:939–947PubMedCrossRefGoogle Scholar
  18. 18.
    Kitamura K, Shirato H, Shimizu S et al (2002) Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumortracking tumortracking radiation therapy (RTRT). Radiother Oncol 62:275–281PubMedCrossRefGoogle Scholar
  19. 19.
    Harada T, Shirato H, Ogura S et al (2002) Realtime tumor tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 95: 1720–1727PubMedCrossRefGoogle Scholar
  20. 20.
    Gill SS, Thomas DGT, Warrington AP, Brada M (1991) Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys 20:599–603PubMedGoogle Scholar
  21. 21.
    Jones D, Christopherson DA, Washington JT et al (1993) A frameless method for stereotactic radiotherapy. Br J Radiol 66:1142–1150PubMedCrossRefGoogle Scholar
  22. 22.
    Aoyama H, Shirato H, Onimaru R et al (2003) Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys 56:793–800PubMedCrossRefGoogle Scholar
  23. 23.
    Aoki M, Abe Y, Hatayama Y et al (2006) Clinical outcome of hypofractionated conventional conformation radiotherapy for patients with single and no more than three metastatic brain tumors, with noninvasive fixation of the skull without whole-brain irradiation. Int J Radiat Oncol Biol Phys 64:414–418PubMedCrossRefGoogle Scholar
  24. 24.
    Manning MA, Cardinale RM, Benedict SH et al (2000) Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients brain metastases. Int J Radiat Oncol Biol Phys 47:603–608PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2007

Authors and Affiliations

  • R. M. Cañón
    • 1
    Email author
  • I. Azinovic
    • 1
  • M. Lobato
    • 1
  • J. Navarro
    • 2
  • J. Rebollo
    • 3
  1. 1.Oncología Radioterápica. Plataforma de OncologíaUSP Hospital San JaimeTorrevieja, AlicanteSpain
  2. 2.Servicio de NeurocirugíaUSP Hospital San JaimeTorrevieja, AlicanteSpain
  3. 3.Oncología Médica. Plataforma de OncologíaUSP Hospital San JaimeTorrevieja, AlicanteSpain

Personalised recommendations