Skip to main content

Advertisement

Log in

Therapeutic opportunities and targets in childhood leukemia

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Childhood leukemia is a common pediatric cancer in the developed world, the disease is biologically diverse and there is much discussion as to its causal mechanisms. Acute lymphoblastic leukemia (ALL) is the most common subtype and infants with ALL have a greatly increased risk of treatment failure. There are molecular and biological properties of leukemic cells that determine treatment outcome; these can usually be attributed to distinct genetic abnormalities that alter the normal proliferative and survival signals of hematopoietic cells. Experimental evidence for the existence of leukemic stem cells (LSC) has been obtained, and it is presumed that these cells arise from mutations in normal hematopoetic stem cells or progenitor cells, and they are difficult to eradicate. LSC seem to be surprisingly different from their normal counterparts and therefore are obvious new targets for drug therapy. Therapeutic concepts using monoclonal antibodies have substantially improved response rates in patients with malignant lymphomas and are currently being evaluated in other types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libura J, Slater DJ, Félix CA, Richardson C. Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34+ cells and remain stable after clonal expansion. Blood. 2005;105(5):2124–31.

    Article  PubMed  CAS  Google Scholar 

  2. Huret JL, Dessen P, Bernheim A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia. 2001;15:987–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 1998;95(8):4584–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ford AM, Fasching K, Panzer-Grumayer ER, Koenig M, Haas OA, Greaves MF. Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood. 2001;98(3):558–64.

    Article  PubMed  CAS  Google Scholar 

  5. Greaves M. In utero origins of childhood leukaemia. Early Hum Dev. 2005;81(1):123–9.

    Article  PubMed  Google Scholar 

  6. Armstrong SA, Golub TR, Korsmeyer SJ. MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol. 2003;40(4):268–73.

    Article  PubMed  CAS  Google Scholar 

  7. Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3(2):173–83.

    Article  PubMed  CAS  Google Scholar 

  8. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–65.

    Article  PubMed  CAS  Google Scholar 

  9. Smith BD, Bao T, Karp JE. New concepts in the treatment of acute myeloid malignancies: selected pathways for targeted therapy. J Biol Regul Homeost Agents. 2005;19(1–2):23–32.

    PubMed  CAS  Google Scholar 

  10. Stam RW, den Boer ML, Schneider P, et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood. 2005;106(7):2484–90.

    Article  PubMed  CAS  Google Scholar 

  11. Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.

    PubMed  CAS  Google Scholar 

  12. Kelly LM, Gilliand DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–98.

    Article  PubMed  CAS  Google Scholar 

  13. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1995;92(11):4917–21.

    Article  PubMed  CAS  Google Scholar 

  14. Romana SP, Poirel H, Leconiat M, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995;86(11):4263–9.

    PubMed  CAS  Google Scholar 

  15. Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–503.

    Article  PubMed  CAS  Google Scholar 

  16. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA. 2002;99(12):8242–7.

    Article  PubMed  CAS  Google Scholar 

  17. McLean TW, Ringold S, Neuberg D, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood. 1996;88(11):4252–8.

    PubMed  CAS  Google Scholar 

  18. Fenrick R, Wang L, Nip J, et al. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of rastransformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol. 2000;20 (16):5828–39.

    Article  PubMed  CAS  Google Scholar 

  19. Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood. 2000;96(7):2557–61.

    PubMed  CAS  Google Scholar 

  20. Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol. 2005;68(4):917–32.

    Article  PubMed  CAS  Google Scholar 

  21. Gore SD. Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nature Clinical Practice Oncology. 2005;2:S30-S5.

    Article  PubMed  CAS  Google Scholar 

  22. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.

    Article  PubMed  CAS  Google Scholar 

  23. Loh ML & Rubnitz JE. TEL-AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol. 2002;9(4):345–52.

    Article  PubMed  Google Scholar 

  24. Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.

    Article  PubMed  CAS  Google Scholar 

  25. Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene. 2002;21(56):8652–67.

    Article  PubMed  CAS  Google Scholar 

  26. Von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J. Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood. 2006;108(4):1528–33.

    Article  Google Scholar 

  27. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    Article  PubMed  Google Scholar 

  28. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.

    Article  PubMed  CAS  Google Scholar 

  29. Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA. 2005;294(11):1359–66.

    Article  PubMed  CAS  Google Scholar 

  30. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.

    Article  PubMed  CAS  Google Scholar 

  31. Hope KJ, Jin L, Dick JE. Human acute myeloid leukemia stem cells. Arch Med Res. 2003;34(6):507–14.

    Article  PubMed  CAS  Google Scholar 

  32. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006; Jul 16.

    Google Scholar 

  33. Schwarzenberg L, Mathe G. White cell transfusions: six years experience. Br J Haematol. 1969;17(6):603–4.

    PubMed  CAS  Google Scholar 

  34. Powles RL, Russell J, Lister TA, et al. Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient. Br J Cancer. 1977;35(3):265–72.

    PubMed  CAS  Google Scholar 

  35. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5.

    PubMed  CAS  Google Scholar 

  36. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. 2004;103(3):767–76.

    Article  PubMed  CAS  Google Scholar 

  37. Kolb HJ, Schattenberg A, Goldman JM, et al. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995; 86(5):2041–50.

    PubMed  CAS  Google Scholar 

  38. Clark RE, Dodi IA, Hill SC, et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood. 2001;98(10):2887–93.

    Article  PubMed  CAS  Google Scholar 

  39. Norbury LC, Clark RE, Christmas SE. b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. Br J Haematol. 2000;109 (3):616–21.

    Article  PubMed  CAS  Google Scholar 

  40. Zheng Z, Takahashi M, Aoki S, et al. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies. J Exp Clin Cancer Res. 1998;17(3):251–8.

    PubMed  CAS  Google Scholar 

  41. Gokbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects. Ann Hematol. 2004; 83(4):201–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by an unrestricted educational grant from Pfizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, A.M., Martínez-Ramírez, Á. Therapeutic opportunities and targets in childhood leukemia. Clin Transl Oncol 8, 560–565 (2006). https://doi.org/10.1007/s12094-006-0061-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0061-5

Key words

Navigation