Skip to main content
Log in

Molecularly Imprinted Polymers Coupled with Cellulosic Paper-Based Analytical Devices for Biosensing Applications

  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers (MIPs) function as versatile and highly selective elements in biosensing, mimicking biomolecular receptors and effectively interacting with target analytes within complex matrices. Integrating MIPs with paper-based analytical devices (PADs) allows for rapid, convenient, and cost-effective deployment of molecular imprinting technologies. This review provides an overview of the advances in the fabrication process of MIP-PADs and explores their diverse applications, highlighting their utility in on-site detection using various detection mechanisms such as colorimetric, fluorometric, chemiluminescent electrochemical, photoelectrochemical, and surface enhanced Raman spectroscopy. The fabrication process involves synthesizing MIPs tailored for specific target analytes and incorporating them into cellulosic paper-based analytical devices, resulting in MIP-PADs that offer advantages such as affordability, portability, and disposability. Applications of MIP-PADs extend across environmental monitoring, food safety, and biomedical analysis, demonstrating exceptional selectivity and sensitivity toward diverse biomolecules, pathogens, and small molecules. Their affordability and user-friendly design make them particularly suitable for resource-limited settings. Lastly, the challenges and future prospects of MIP-PAD technologies are presented in the context of real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 119:1340–1342

    Article  Google Scholar 

  2. Mahadeva SK, Walus K, Stoeber B (2015) Paper as a platform for sensing applications and other devices: a review. ACS Appl Mater Interfaces 7:8345–8362

    Article  CAS  PubMed  Google Scholar 

  3. Fu LM, Wang YN (2018) Detection methods and applications of microfluidic paper-based analytical devices. TrAC, Trends Anal Chem 107:196–211

    Article  CAS  Google Scholar 

  4. Noviana E, McCord CP, Clark KM, Jang I, Henry CS (2020) Electrochemical paper-based devices: sensing approaches and progress toward practical applications. LOC 20:9–34

    CAS  Google Scholar 

  5. Mazzu-Nascimento T, Morbioli GG, Milan LA, Donofrio FC, Mestriner CA, Carrilho E (2017) Development and statistical assessment of a paper-based immunoassay for detection of tumor markers. Anal Chim Acta 950:156–161

    Article  CAS  PubMed  Google Scholar 

  6. Ansari S, Masoum S (2019) Molecularly imprinted polymers for capturing and sensing proteins: current progress and future implications. TrAC, Trends Anal Chem 114:29–47

    Article  CAS  Google Scholar 

  7. Zhou T, Ding L, Che G, Jiang W, Sang L (2019) Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment. TrAC, Trends Anal Chem 114:11–28

    Article  CAS  Google Scholar 

  8. Mamipour Z, Nematollahzadeh A, Kompany-Zareh M (2021) Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: a review. Microchim Acta 188:1–21

    Article  Google Scholar 

  9. Li W, Zhang X, Li T, Ji Y, Li R (2021) Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: a review. Anal Chim Acta 1148:238196

    Article  CAS  PubMed  Google Scholar 

  10. Shevchenko KG, Garkushina IS, Canfarotta F, Piletsky SA, Barlev NA (2022) Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine. RSC Adv 12:3957–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saylan Y, Akgönüllü S, Yavuz H, Unal S, Denizli A (2019) Molecularly imprinted polymer based sensors for medical applications. Sensors 19:1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saylan Y, Erdem O, Inci F, Denizli A (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M (2023) Recent molecularly imprinted polymers applications in bioanalysis. Chem pap 77:619–655

    Article  CAS  Google Scholar 

  14. Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Chen L (2022) Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TrAC, Trends Anal Chem 146:116504

    Article  CAS  Google Scholar 

  15. Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Varma RS (2022) Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. Environ Chem Lett 20:2629–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haupt K, Linares AV, Bompart M, Bui BTS (2011) Molecularly imprinted polymers. In: Haupt K (ed) Molecular imprinting. Springer, Berlin, Heidelberg, pp 1–28

    Google Scholar 

  17. Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog 22:1474–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erturk G, Mattiasson B (2017) Molecular imprinting techniques used for the preparation of biosensors. Sensors 17:288

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cowen T, Cheffena M (2022) Template imprinting versus porogen imprinting of small molecules: a review of molecularly imprinted polymers in gas sensing. Int J Mol Sci 23:9642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ensafi AA, Nasr-Esfahani P (2021) Fundamental aspects of molecular imprinting. In: Sooraj MP, Nair AS, Mathew B, Thomas S (eds) Molecularly imprinted polymer composites. Woodhead Publishing, Duxford, UK, pp 5–20

    Chapter  Google Scholar 

  21. Hashim SN, Boysen RI, Schwarz LJ, Danylec B, Hearn MT (2014) A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J Chromatogr A 1359:35–43

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Ye L, Mosbach K (2006) Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J Mol Recognit Interdiscip J 19:248–259

    Article  CAS  Google Scholar 

  23. Qi P, Wang J, Wang L, Li Y, Jin J, Su F, Chen J (2010) Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols. Polym J 51:5417–5423

    Article  CAS  Google Scholar 

  24. Mustafa YL, Keirouz A, Leese HS (2022) Molecularly imprinted polymers in diagnostics: accessing analytes in biofluids. J Mater Chem B 10:7418–7449

    Article  CAS  PubMed  Google Scholar 

  25. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543

    Article  CAS  Google Scholar 

  26. Ali MM, Zhu S, Amin FR, Hussain D, Du Z, Hu L (2022) Molecular imprinting of glycoproteins: from preparation to cancer theranostics. Theranostics 12:2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma Y, Yin Y, Ni L, Miao H, Wang Y, Pan C, Pan G (2021) Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioact Mater 6:1308–1317

    CAS  PubMed  Google Scholar 

  28. Zangiabadi M, Zhao Y (2020) Selective binding of complex glycans and glycoproteins in water by molecularly imprinted nanoparticles. Nano Lett 20:5106–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garnier M, Sabbah M, Ménager C, Griffete N (2021) Hybrid molecularly imprinted polymers: the future of nanomedicine? J Nanomater 11:3091

    Article  CAS  Google Scholar 

  30. Demir O, Ulusoy HI, Ozer ET, Osman B (2020) Development of a new solid phase extraction method for sensitive determination of some carbamate pesticides in water using poly (EGDMA-MATrp) microbeads. Microchem J 158:105317

    Article  CAS  Google Scholar 

  31. Zhou X, Lai C, Huang D, Zeng G, Chen L, Qin L, Zhou C (2018) Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution. J Hazard Mater 346:113–123

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z, Qiu T, Guo L, Ye J, He L, Li X (2017) The synthesis of hydrophilic molecularly imprinted polymer microspheres and their application for selective removal of bisphenol A from water. React Funct Polym 116:69–76

    Article  CAS  Google Scholar 

  33. Zhou T, Ding L, Che G, Jiang W, Sang L (2019) Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment. TrAC—Trends Anal Chem 114:11–28

    Article  CAS  Google Scholar 

  34. Pardeshi S, Singh SK (2016) Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv 6:23525–23536

    Article  CAS  Google Scholar 

  35. Zeng H, Yu X, Wan J, Cao X (2020) Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochem 94:329–339

    Article  CAS  Google Scholar 

  36. Lai JP, Yang ML, Niessner R, Knopp D (2007) Molecularly imprinted microspheres and nanospheres for di (2-ethylhexyl) phthalate prepared by precipitation polymerization. Anal Bioanal Chem 389:405–412

    Article  CAS  PubMed  Google Scholar 

  37. Lorenzo RA, Carro AM, Alvarez-Lorenzo C, Concheiro A (2011) To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). Int J Mol Sci 12:4327–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garg M, Pamme N (2024) Strategies to remove templates from molecularly imprinted polymer (MIP) for biosensors. TrAC-Trend Anal Chem 170:117437

    Article  CAS  Google Scholar 

  39. Xu S, Xu Z, Liu Z (2022) Based molecular-imprinting technology and its application. Biosensors 12:595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rypar T, Adam V, Vaculovicova M, Macka M (2021) Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers. Sens Actuators B Chem 341:129999

    Article  CAS  Google Scholar 

  41. Wang Y, Ge S, Liu H, Yu J, Yan M (2016) based colorimetric analytical device based on molecularly imprinted polymers. Nanomed Nanotechnol Biol Med 2:534

    Article  Google Scholar 

  42. Oliveira AEF, Pereira AC, Ferreira LF (2023) Disposable electropolymerized molecularly imprinted electrochemical sensor for determination of breast cancer biomarker CA 15–3 in human serum samples. Talanta 252:123819

    Article  CAS  PubMed  Google Scholar 

  43. Amatatongchai M, Nontawong N, Ngaosri P, Chunta S, Wanram S, Jarujamrus P, Lieberzeit PA (2022) Facile and compact electrochemical paper-based analytical device for point-of-care diagnostic of dual carcinogen oxidative stress biomarkers through a molecularly imprinted polymer coated on graphene quantum-dot capped gold. Anal Chem 94:16692–16700

    Article  CAS  PubMed  Google Scholar 

  44. Li T, Deng Z, Bu J, Liu H, Yang Y, Zhong S (2022) Quantum dot based molecularly imprinted polymer test strips for fluorescence detection of ferritin. Sens Actuators B Chem 358:131548

    Article  CAS  Google Scholar 

  45. Díaz-Liñán MC, López-Lorente AI, Cárdenas S, Lucena R (2019) Molecularly imprinted paper-based analytical device obtained by a polymerization-free synthesis. Sens Actuators B Chem 287:138–146

    Article  Google Scholar 

  46. Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, Jarujamrus P, Lieberzeit PA (2019) Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@ Au@ SiO2 for serotonin determination. Anal Chim Acta 1077:255–265

    Article  CAS  PubMed  Google Scholar 

  47. Alahmad W, Sahragard A, Varanusupakul P (2021) Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: a review. Biosens Bioelectron 194:113574

    Article  CAS  PubMed  Google Scholar 

  48. Martins GV, Riveiro A, Chiussi S, Sales MGF (2022) Flexible sensing devices integrating molecularly-imprinted polymers for the detection of 3-nitrotyrosine biomarker. Biosens Bioelectron X 10:100107

    CAS  Google Scholar 

  49. Chen Z, Wright C, Dincel O, Chi TY, Kameoka J (2020) A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. J Sens 20(4):1098

    Article  CAS  Google Scholar 

  50. Nontawong N, Ngaosri P, Chunta S, Jarujamrus P, Nacapricha D, Lieberzeit PA, Amatatongchai M (2022) Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device. Anal Chim Acta 1191:339363

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Cui H, Han Y, Yu F, Shi X (2018) Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem 240:893–897

    Article  CAS  PubMed  Google Scholar 

  52. Li B, Zhang Z, Qi J, Zhou N, Qin S, Choo J, Chen L (2017) Quantum dot-based molecularly imprinted polymers on three-dimensional origami paper microfluidic chip for fluorescence detection of phycocyanin. ACS Sens 2:243–250

    Article  CAS  PubMed  Google Scholar 

  53. Akbulut Y, Zengin A (2020) A molecularly imprinted whatman paper for clinical detection of propranolol. Sens Actuators B Chem 304:127276

    Article  CAS  Google Scholar 

  54. Fang M, Zhou L, Zhang H, Liu L, Gong ZY (2019) A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1, 2-diol determination. Food chem 274:156–161

    Article  CAS  PubMed  Google Scholar 

  55. Pereira MV, Marques AC, Oliveira D, Martins R, Moreira FT, Sales MGF, Fortunato E (2020) based platform with an in situ molecularly imprinted polymer for β-amyloid. ACS Omega 5:12057–12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuscuoglu CK, Guner H, Soylemez MA, Guven O, Barsbay M (2019) A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization. Sens Actuators B Chem 296:126653

    Article  CAS  Google Scholar 

  57. Kong Q, Wang Y, Zhang L, Ge S, Yu J (2017) A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens Actuators B Chem 243:130–136

    Article  CAS  Google Scholar 

  58. Xiao L, Zhang Z, Wu C, Han L, Zhang H (2017) molecularly imprinted polymer grafted paper-based method for the detection of 17β-estradiol. Food Chem 221:82–86

    Article  CAS  PubMed  Google Scholar 

  59. Zeng L, Cui H, Chao J, Huang K, Wang X, Zhou Y, Jing T (2020) Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim Acta 187:1–9

    Article  Google Scholar 

  60. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)-a review. Anal Chim Acta 970:1–22

    Article  CAS  PubMed  Google Scholar 

  61. Qi J, Li B, Wang X, Zhang Z, Wang Z, Han J, Chen L (2017) Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology. Sens Actuators B Chem 251:224–233

    Article  CAS  Google Scholar 

  62. Xin-Ran WANG, Bo-Wei LI, Hui-Yan YOU, Ling-Xin CHEN (2015) An ion imprinted polymers grafted paper-based fluorescent sensor based on quantum dots for detection of Cu2+ ions. Chin J Anal Chem 43:1499–1504

    Article  Google Scholar 

  63. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  PubMed  Google Scholar 

  64. Cui X, Xu S, Jin C, Ji Y (2018) Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 1033:35–48

    Article  CAS  PubMed  Google Scholar 

  65. Nie Y, Liu Y, Su X, Ma Q (2019) Nitrogen-rich quantum dots-based fluorescence molecularly imprinted paper strip for p-nitroaniline detection. Microchem J 148:162–168

    Article  CAS  Google Scholar 

  66. Wang J, Dai J, Xu Y, Dai X, Zhang Y, Shi W, Pan G (2019) Molecularly imprinted fluorescent test strip for direct, rapid, and visual dopamine detection in tiny amount of biofluid. Small 15:1803913

    Article  Google Scholar 

  67. Al Mughairy B, Al-Lawati HA (2020) Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC, Trends Anal Chem 124:115802

    Article  CAS  Google Scholar 

  68. Xiao Q, Xu C (2020) Research progress on chemiluminescence immunoassay combined with novel technologies. TrAC, Trends Anal Chem 124:115780

    Article  CAS  Google Scholar 

  69. Chen G, Jin M, Du P, Zhang C, Cui X, Zhang Y, Wang JA (2017) sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Anal Biochem 530:87–93

    Article  CAS  PubMed  Google Scholar 

  70. Wang S, Zhao P, Li N, Qiao X, Xu Z (2018) Development of a chemiluminescence sensor based on molecular imprinting technology for the determination of trace monocrotophos in vegetables. Adv Polym Technol 37:1401–1409

    Article  CAS  Google Scholar 

  71. Wang S, Jiang M, Ju Z, Qiao X, Xu Z (2018) A flow-injection chemiluminescent biomimetic immunoassay method using a molecularly imprinted polymer as a biomimetic antibody for the determination of trichlorfon. Food Agric Immunol 29:159–170

    Article  CAS  Google Scholar 

  72. Huang JJ, Liu J, Liu JX, Wang JP (2020) A microtitre chemiluminescence sensor for detection of pyrethroids based on dual-dummy-template molecularly imprinted polymer and computational simulation. Luminescence 35:120–128

    Article  CAS  PubMed  Google Scholar 

  73. Ge L, Wang S, Yu J, Li N, Ge S, Yan M (2013) Molecularly imprinted polymer grafted porous Au-paper electrode for a microfluidic electro-analytical origami device. Adv Funct Mater 23:3115–3123

    Article  CAS  Google Scholar 

  74. Ferreira NS, Moreira AP, de Sa MHM, Sales MGF (2017) New electrochemically-derived plastic antibody on a simple conductive paper support for protein detection: application to BSA. Sens Actuators B Chem 243:1127–1136

    Article  CAS  Google Scholar 

  75. Khan MAR, Cardoso ARA, Sales MGF, Merino S, Tomas JM, Rius FX, Riu J (2017) Artificial receptors for the electrochemical detection of bacterial flagellar filaments from Proteus mirabilis. Sens Actuators B Chem 244:732–741

    Article  CAS  Google Scholar 

  76. Qi J, Li B, Zhou N, Wang X, Deng D, Luo L, Chen L (2019) The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens Bioelectron 142:111533

    Article  CAS  PubMed  Google Scholar 

  77. Lahcen AA, Amine A (2019) Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis 31:188–201

    Article  CAS  Google Scholar 

  78. Restaino SM, White IM (2019) A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 1060:17–29

    Article  CAS  PubMed  Google Scholar 

  79. Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L (2020) Molecular-imprinting-based surface-enhanced Raman scattering sensors. ACS Sens 5:601–619

    Article  CAS  PubMed  Google Scholar 

  80. Liu H, Zhao P, Wang Y, Li S, Zhang L, Zhang Y, Yu J (2020) Based sandwich type SERS sensor based on silver nanoparticles and biomimetic recognizer. Sens Actuators B Chem 313:127989

    Article  CAS  Google Scholar 

  81. Zhao P, Liu H, Zhang L, Zhu P, Ge S, Yu J (2020) Based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl Mater Interfaces 12:8845–8854

    Article  CAS  PubMed  Google Scholar 

  82. Svitkova V, Palchetti I (2020) Functional polymers in photoelectrochemical biosensing. Bioelectrochemistry 136:107590

    Article  CAS  PubMed  Google Scholar 

  83. Shu J, Tang D (2019) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. J Anal Chem 92:363–377

    Article  Google Scholar 

  84. Kang Q, Zhang Q, Zang L, Zhao M, Chen X, Shen D (2020) Enhancement anti-interference ability of photoelectrochemical sensor via differential molecularly imprinting technique demonstrated by dopamine determination. Anal Chim Acta 1125:201–209

    Article  CAS  PubMed  Google Scholar 

  85. Wang P, Sun G, Ge L, Ge S, Yu J, Yan M (2013) Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode. Analyst 138:4802–4811

    Article  CAS  PubMed  Google Scholar 

  86. Alahmad W, Tungkijanansin N, Kaneta T, Varanusupakul P (2018) A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples. Talanta 190:78–84

    Article  CAS  PubMed  Google Scholar 

  87. Kaneta T, Alahmad W, Varanusupakul P (2019) Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors. Appl Spectrosc Rev 54:117–141

    Article  Google Scholar 

  88. Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2018) Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 1001:1–17

    Article  CAS  PubMed  Google Scholar 

  89. Zhu L, Mei X, Peng Z, Yang J, Li Y (2022) A paper-based microfluidic sensor array combining molecular imprinting technology and carbon quantum dots for the discrimination of nitrophenol isomers. J Hazard Mater 435:129012

    Article  CAS  PubMed  Google Scholar 

  90. Qi J, Li B, Wang X, Fu L, Luo L, Chen L (2018) Rotational paper-based microfluidic-chip device for multiplexed and simultaneous fluorescence detection of phenolic pollutants based on a molecular-imprinting technique. Anal Chem 90:11827–11834

    Article  CAS  PubMed  Google Scholar 

  91. Chi TY, Chen Z, Kameoka J (2020) Perfluorooctanesulfonic acid detection using molecularly imprinted polyaniline on a paper substrate. Sensors 20:7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang S, Ge L, Li L, Yan M, Ge S, Yu J (2013) Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosens Bioelectron 50:262–268

    Article  CAS  PubMed  Google Scholar 

  93. Li B, Qi J, Liu F, Zhao R, Arabi M, Ostovan A, Chen L (2023) Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin. Nat Commun 14:6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chilaka CA, De Boevre M, Atanda OO, De Saeger S (2016) Occurrence of Fusarium mycotoxins in cereal crops and processed products (Ogi) from Nigeria. Toxins 8:342

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lasram S, Oueslati S, Mliki A, Ghorbel A, Silar P, Chebil S (2012) Ochratoxin A and ochratoxigenic black Aspergillus species in Tunisian grapes cultivated in different geographic areas. Food Control 25:75–80

    Article  CAS  Google Scholar 

  96. Tolosa J, Graziani G, Gaspari A, Chianese D, Ferrer E, Mañes J, Ritieni A (2017) Multi-mycotoxin analysis in durum wheat pasta by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Toxins 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ramalho RR, Pereira I, Lima GDS, dos Santos GF, Maciel LI, Simas RC, Vaz BG (2022) Fumonisin B1 analysis in maize by molecularly imprinted polymer paper spray ionization mass spectrometry (MIP-PSI-MS). J Food Compos Anal 107:104362

    Article  CAS  Google Scholar 

  98. He L, Nan T, Cui Y, Guo S, Zhang W, Zhang R, Cui L (2014) Development of a colloidal gold-based lateral flow dipstick immunoassay for rapid qualitative and semi-quantitative analysis of artesunate and dihydroartemisinin. Malar J 13:1–10

    Article  Google Scholar 

  99. Fan L, Hao Q, Kan X (2018) Three-dimensional graphite paper based imprinted electrochemical sensor for tertiary butylhydroquinone selective recognition and sensitive detection. Sens Actuators B Chem 256:520–527

    Article  CAS  Google Scholar 

  100. Chi H, Li Y, Liu G (2022) Molecularly imprinted sensing platform based on electrochemically modified graphite paper for efficient detection of 3-monochloropropane-1, 2-diol. Food Chem 386:132829

    Article  CAS  PubMed  Google Scholar 

  101. da Silva JL, Buffon E, Beluomini MA, Pradela-Filho LA, Araújo DAG, Santos AL, Stradiotto NR (2021) Non-enzymatic lactose molecularly imprinted sensor based on disposable graphite paper electrode. Anal Chim Acta 1143:53–64

    Article  PubMed  Google Scholar 

  102. Mars A, Mejri A, Hamzaoui AH, Elfil H (2021) Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Microchim Acta 188:1–11

    Article  Google Scholar 

  103. Tawfik SM, Elmasry MR, Sharipov M, Azizov S, Lee CH, Lee YI (2020) Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens Bioelectron 160:112211

    Article  CAS  PubMed  Google Scholar 

  104. Mendes TP, Pereira I, Ferreira MR, Chaves AR, Vaz BG (2017) Molecularly imprinted polymer-coated paper as a substrate for highly sensitive analysis using paper spray mass spectrometry: quantification of metabolites in urine. Anal Methods 9:6117–6123

    Article  CAS  Google Scholar 

  105. Bossard B, Grothe RA, Martins AB, Lobato A, Tasić N, Paixao TR, Gonçalves LM (2022) Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of D-glucose via a molecularly imprinted polymer. Monatsh Chem 153:1129–1135

    Article  CAS  Google Scholar 

  106. Kumar S, Pandey CM, Hatamie A, Simchi A, Willander M, Malhotra BDA (2019) Nanomaterial-modified conducting paper: fabrication, properties, and emerging biomedical applications. Glob Chall 3:1900041

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ratautaite V, Boguzaite R, Brazys E, Ramanaviciene A, Ciplys E, Juozapaitis M, Ramanavicius A (2022) Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 403:139581

    Article  CAS  PubMed  Google Scholar 

  108. Kassem S, Hamdy ME, Selim KM, Elmasry DM, Shahein MA, El-Husseini DM (2024) Development of paper-based fluorescent molecularly imprinted polymer sensor for rapid detection of lumpy skin disease virus. Molecules 29:1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun X, Jian Y, Wang H, Ge S, Yan M, Yu J (2019) Ultrasensitive microfluidic paper-based electrochemical biosensor based on molecularly imprinted film and boronate affinity sandwich assay for glycoprotein detection. ACS Appl Mater Interfaces 11:16198–16206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors MR & PK acknowledge SRM Institute of Science and Technology, Chennai, India for providing all necessary facility. AK & DBP are also thankful to HBTU, Kanpur, Uttar Pradesh for necessary facilities. The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding through the project number ISP23-101.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bahadur Pal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, A., Raghunathan, M., Kumar, P. et al. Molecularly Imprinted Polymers Coupled with Cellulosic Paper-Based Analytical Devices for Biosensing Applications. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01300-y

Keywords

Navigation