Skip to main content
Log in

Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet)

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3–22.3% in Staphylococcus aureus, 16.8–23.5% in Streptococcus pyogenes and 12–16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5–20.7% for Candida albicans, 3.5–7.7% for Candida auris, and 5.5–15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A et al (2016) Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant J 85:229–244. https://doi.org/10.1111/tpj.13103

    Article  CAS  PubMed  Google Scholar 

  2. Hossain A, Maitra S, Pramanick B, Bhutia KL, Ahmad Z et al (2022) Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In: Plant perspectives to global climate changes. Academic Press, Cambridge, pp. 471–518. https://doi.org/10.1016/B978-0-323-85665-2.00011-X

  3. Rozema J, Cornelisse D, Zhang Y, Li H, Bruning B et al (2015) Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB Plants 7:2015. https://doi.org/10.1093/aobpla/plu083

    Article  CAS  Google Scholar 

  4. Al-Jbawi E (2020) All about fodder beet (beta vulgaris subsp. crassa L.) as a source of forage in the world and Syria. Res J Sci 1:24–44

    Google Scholar 

  5. Thiruvengadam M, Chung IM, Samynathan R, Chandar SH, Venkidasamy B et al (2022) A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 64:708–739. https://doi.org/10.1080/10408398.2022.2108367

    Article  CAS  PubMed  Google Scholar 

  6. Slavova Y, Nenkova D, Ivanova I (2004) Optimization of nutritive medium with the purpose of rooting of fodder beet (Beta vulgaris L. var crassa) through in vitro method. Bulg J Agric Sci 10:465–468

    Google Scholar 

  7. Enchev S, Bozhanska T (2022) Chemical composition of sugar beet, fodder beet and table beet depending on the harvest period. Bulg J Agric Sci 28:1034–1039

    Google Scholar 

  8. Bhunia S, Bhowmik A, Mallick R, Mukherjee J (2021) Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: a review. Agronomy 11:823. https://doi.org/10.3390/agronomy11050823

    Article  CAS  Google Scholar 

  9. Malcolm BJ, Cameron KC, Edwards GR, Di HJ, de Ruiter JM et al (2016) Nitrate leaching losses from lysimeters simulating winter grazing of fodder beet by dairy cows. New Zealand J Agric Res 59:194–203. https://doi.org/10.1080/00288233.2016.1150307

    Article  CAS  Google Scholar 

  10. Olumese FE, Oboh HA (2016) Antioxidant and Antioxidant capacity of raw and processed Nigerian Beetroot (Beta vulgaris). Nig J Basic Appl Sci 24:35–40. https://doi.org/10.4314/njbas.v24i1.6

    Article  Google Scholar 

  11. Kale R, Sawate AR, Kshirsagar R, Patil B, Mane R (2018) Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L). Int J Chem Stud 6:2977–2979

    Google Scholar 

  12. Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822. https://doi.org/10.3390/nu7042801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muñoz-González C, Brule M, Martin C, Feron G, Canon F (2022) Molecular mechanisms of aroma persistence: from noncovalent interactions between aroma compounds and the oral mucosa to metabolization of aroma compounds by saliva and oral cells. Food Chem 373:131467. https://doi.org/10.1016/j.foodchem.2021.131467

    Article  CAS  PubMed  Google Scholar 

  14. Hou T, Sana SS, Li H, Xing Y, Nanda A et al (2022) Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: a review. Food Biosci 47:101716. https://doi.org/10.1016/j.fbio.2022.101716

    Article  CAS  Google Scholar 

  15. Munda S, Dutta S, Pandey SK, Sarma N, Lal M (2019) Antimicrobial activity of essential oils of medicinal and aromatic plants of the North east India: a biodiversity hot spot. J Essent Oil-Bear Plants 22:105–119. https://doi.org/10.1080/0972060X.2019.1601032

    Article  CAS  Google Scholar 

  16. Aguirre-Becerra H, Vazquez-Hernandez MC, de la Saenz OD, Alvarado-Mariana A, Guevara-Gonzalez RG et al (2021) Role of stress and defense in plant secondary metabolites production. In: Pal D, Nayak AK (eds) Bioactive natural products for pharmaceutical applications. Springer, Berlin, pp 151–195. https://doi.org/10.1007/978-3-030-54027-2-5

    Chapter  Google Scholar 

  17. Ju J, Xie Y, Yu H, Guo Y, Cheng Y et al (2022) Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Crit Rev Food Sci Nutr 62:1740–1751. https://doi.org/10.1080/10408398.2020.1846494

    Article  CAS  PubMed  Google Scholar 

  18. Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U et al (2020) Chemical characteristics and anticancer activity of essential oil from Arnica montana L. rhizomes and roots. Molecules 25:1284. https://doi.org/10.3390/molecules25061284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paes de Almeida V, Tolouei SEL, Minteguiaga M, Chaves DSDA, Heiden G et al (2023) Chemical profiles and cytotoxic activities of essential oils from six species of Baccharis subgenus Coridifoliae (Asteraceae). Chem Biodivers 20:e202300862. https://doi.org/10.1002/cbdv.202300862

    Article  CAS  PubMed  Google Scholar 

  20. Baptista RC, Horita CN, Sant’Ana AS (2020) Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: a review. Food Res Int 127:108762. https://doi.org/10.1016/j.foodres.2019.108762

    Article  PubMed  Google Scholar 

  21. Al-Hwaiti MS, Alsbou EM, Abu Sheikha G, Bakchiche B, Pham TH et al (2021) Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci Nutr 9:282–289. https://doi.org/10.1002/fsn3.1994

    Article  CAS  PubMed  Google Scholar 

  22. Balusamy SR, Perumalsamy H, Veerappan K, Huq MA, Rajeshkumar S et al (2020) Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: In silico and in vitro study. BioMed Res Int 2020:6040727. https://doi.org/10.1155/2020/6040727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12:457. https://doi.org/10.3390/nu12020457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El-Amier YA, Soliman HM, El-Halawany EF, El-Nabawy BS (2022) Chemical characterization of Reichardia tingitana methanolic extract and evaluation of its antioxidant and anticancer activity. Egypt J Chem 65:933–940. https://doi.org/10.21608/EJCHEM20221557206722

    Article  Google Scholar 

  25. Morsi EA, Ahmed HO, Abdel-Hady H, El-Sayed M, Shemis MA (2020) GC-analysis, and antioxidant, anti-inflammatory, and anticancer activities of some extracts and fractions of Linum usitatissimum. Curr Bioact Compd 16:1306–1318. https://doi.org/10.2174/1573407216666200206095954

    Article  CAS  Google Scholar 

  26. Linz MS, Mattappallil A, Finkel D, Parker D (2023) Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 12:557. https://doi.org/10.3390/antibiotics12030557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hurst JR, Shannon BA, Craig HC, Rishi A, Tuffs SW et al (2022) The Streptococcus pyogenes hyaluronic acid capsule promotes experimental nasal and skin infection by preventing neutrophil-mediated clearance. PLoS Pathog 18:e1011013. https://doi.org/10.1371/journal.ppat.1011013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alamiri F, André O, De S, Nordenfelt P, Hakansson AP (2023) Role of serotype and virulence determinants of Streptococcus pyogenes biofilm bacteria in internalization and persistence in epithelial cells in vitro. Front Cell Infect Microbiol 13:1146431. https://doi.org/10.3389/fcimb.2023.1146431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eishi Y (2023) Potential association of Cutibacterium acnes with sarcoidosis as an endogenous hypersensitivity infection. Microorganisms 11:289. https://doi.org/10.3390/microorganisms11020289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mastrolorenzo A, Giomi B, Cipollini EM, Tammaro R, Decarli N et al (2012) Mycetomatoid infection of the penis by Candida albicans. Int J Dermatol 51:1082–1085. https://doi.org/10.1111/j.1365-4632.2011.05386.x

    Article  PubMed  Google Scholar 

  31. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM et al (2018) Candida auris: a review of the literature. Clin Microbiol Rev 31:e00029-e117. https://doi.org/10.1128/cmr.00029-17

    Article  PubMed  Google Scholar 

  32. Perlin DS, Shor E, Zhao Y (2015) Update on antifungal drug resistance. Curr Clin Microbiol Rep 2:84–95. https://doi.org/10.1007/s40588-015-0015-1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18. https://doi.org/10.1016/j.aca.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  34. Neto JAR, Alves SN, dos Santos Lima LAR (2023) Fatty acid methyl esters (FAMEs) obtained from edible vegetable oils: larvicidal activity and melanization process in Aedes aegypti larvae. Biocatal Agric Biotechnol 50:102689. https://doi.org/10.1016/j.bcab.2023.102689

    Article  CAS  Google Scholar 

  35. Asraoui F, Kounnoun A, Cadi HE, Cacciola F et al (2021) Phytochemical investigation and antioxidant activity of Globularia alypum L Molecules 26:759. https://doi.org/10.3390/molecules26030759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben Mrid R, Bouchmaa N, Bouargalne Y, Ramdan B, Karrouchi K et al (2019) Phytochemical characterization, antioxidant and in vitro cytotoxic activity evaluation of Juniperus oxycedrus Subsp. oxycedrus needles and berries. Molecules 24:502. https://doi.org/10.3390/molecules24030502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matuschek E, Copsey-Mawer S, Petersson S, Åhman J, Morris TE et al (2023) The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin Microbiol Infect 29:795-e1. https://doi.org/10.1016/j.cmi.2023.01.027

    Article  CAS  Google Scholar 

  38. Pesingi PV, Singh BR, Pesingi PK, Bhardwaj M, Singh SV et al (2019) MexAB-OprM efflux pump of Pseudomonas aeruginosa offers resistance to carvacrol: a herbal antimicrobial agent. Front Microbiol 10:2664. https://doi.org/10.3389/fmicb.2019.02664

    Article  PubMed  PubMed Central  Google Scholar 

  39. Awang N, Aziz ZA, Kamaludin NF, Chan KM (2014) Cytotoxicity and mode of cell death induced by Triphenyltin (IV) compounds in vitro. OnLine J Bio Sci 14:84. https://doi.org/10.3844/ojbssp.2014.84.93

    Article  CAS  Google Scholar 

  40. Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J et al (2022) An overview of essential microelements and common metallic nanoparticles and their effects on male fertility. Int J Environ Res Public Health 19:11066. https://doi.org/10.3390/ijerph191711066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Özturan K, Atasever M (2018) Süt ve ürünlerinde mineral maddeler ve ağır metaller. Atatürk Univ J Vet Sci 13:229–2412. https://doi.org/10.17094/ataunivbd.317822

    Article  Google Scholar 

  42. El-Jendoubi H, Vázquez S, Calatayud A, Vavpetic P, Vogel-Mikuš K et al (2014) The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Front Plant Sci 5:16. https://doi.org/10.3389/fpls.2014.00002

    Article  Google Scholar 

  43. Mzoughi Z, Chahdoura H, Chakroun Y, Camara M, Fernandez-Ruiz V et al (2019) Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res Int 119:612–621. https://doi.org/10.1016/j.foodres.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  44. Biondo P, Boeing JS, Barizao EO, Souza N, Matsushita M et al (2014) Evaluation of beetroot (Beta vulgaris L.) leaves during its developmental stages: a chemical composition study. Food Sci Technol 34:94–101. https://doi.org/10.1590/S0101-20612014005000007

    Article  Google Scholar 

  45. Zardi-Bergaoui A, BenNejma A, Harzallah-Skhiri F, Flamini G, Ascrizzi R et al (2017) Chemical composition and biological studies of the essential oil from aerial parts of Beta vulgaris subsp. maritima (L.) arcang. growing in Tunisia. Chem Biodivers 14:e1700234. https://doi.org/10.1002/cbdv.201700234

    Article  CAS  Google Scholar 

  46. Onanuga AO, Okpala EO (2022) Chemical compositions and antioxidant activity of volatile oils from Morinda citrifolia and Beta vulgaris leaves from Nigeria. Biol Med Nat Prod Chem 11:161–167. https://doi.org/10.14421/biomedich.2022.112.161-167

    Article  Google Scholar 

  47. Jaouadi R, Boussaid M, Zaouali Y (2023) Variation in essential oil composition within and among Tunisian Thymus algeriensis Boiss et Reut. (Lamiaceae) populations: effect of ecological factors and incidence on antiacetylcholinesterase and antioxidant activities. Biochem Syst Ecol 106:104543. https://doi.org/10.1016/j.bse.2022.104543

    Article  CAS  Google Scholar 

  48. Ninfali P, Angelino D (2013) Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 89:188–199. https://doi.org/10.1016/j.fitote.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  49. Kazemi Shahandashti SS, Maali Amiri R, Zeinali H, Ramezanpour SS (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep 40:893–903. https://doi.org/10.1007/s11033-012-2130-x

    Article  CAS  PubMed  Google Scholar 

  50. Salachas G, Giannakopoulos E, Hela D, Papasavvas A, Savvas D et al (2022) Enhancing bioactive compounds accumulation in red beet (Beta vulgaris L.) plants by managing N nutrition. The identification of the ‘critical’ zone as a cultivation technique. Plant Physiol Biochem 188:21–30. https://doi.org/10.1016/j.plaphy.2022.08.003

    Article  CAS  PubMed  Google Scholar 

  51. Gamba M, Raguindin PF, Asllanaj E, Merlo F, Glisic M et al (2021) Bioactive compounds and nutritional composition of Swiss chard (Beta vulgaris L. var. cicla and flavescens): a systematic review. Crit Rev Food Sci Nutr 61:3465–3480. https://doi.org/10.1080/10408398.2020.1799326

    Article  CAS  PubMed  Google Scholar 

  52. Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T et al (2010) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr 65:105–111. https://doi.org/10.1007/s11130-010-0156-6

    Article  CAS  PubMed  Google Scholar 

  53. Gennari L, Felletti M, Blasa M, Angelino D, Celeghini C et al (2011) Total extract of Beta vulgaris var. Cicla seeds versus its purified phenolic components: antioxidant activities and antiproliferative effects against colon cancer cells. Phytochem Anal 22:272–279. https://doi.org/10.1002/pca.1276

    Article  CAS  PubMed  Google Scholar 

  54. Farhadi N, Babaei K, Farsaraei S, Moghaddam M, Pirbalouti AG (2020) Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind Crops Prod 152:112570. https://doi.org/10.1016/j.indcrop.2020.112570

    Article  CAS  Google Scholar 

  55. Ahmed SH (2023) Allium Cepa and Beta vulgaris extracts and their synergistic activity with antifungal against Candida albicans. South Asian Res J Pharm Sci 5:53–59. https://doi.org/10.36346/sarjps.2023.v05i03.003

    Article  Google Scholar 

  56. Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F (2022) The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 48:611–633. https://doi.org/10.1002/biof.1831

    Article  CAS  PubMed  Google Scholar 

  57. Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE (2022) Health benefits of polyphenols: a concise review. J Food Biochem 46:4264. https://doi.org/10.1111/jfbc.14264

    Article  CAS  Google Scholar 

  58. Koochak H, Seyyednejad SM, Motamedi H (2010) Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pac J Trop Med 3:180–184. https://doi.org/10.1016/S1995-7645(10)60004-1

    Article  CAS  Google Scholar 

  59. Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, Ćetković GS, Čanadanović VM et al (2014) In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods 6:168–175. https://doi.org/10.1016/j.jff.2013.10.003

    Article  CAS  Google Scholar 

  60. John S, Monica J, Priyadarshini S, Sivaraj C, Arumugam P (2017) Antioxidant and antibacterial activities of Beta vulgaris l. peel extracts. Int J Pharma Res Health Sci 5:1974–79. https://doi.org/10.21276/ijprhs.2017.06.14

    Article  CAS  Google Scholar 

  61. Verma S, Chaudhary HS (2011) Effect of Carissa carandas against clinically pathogenic bacterial strains. J Pharm Res 4:3769–3771

    CAS  Google Scholar 

  62. El-Zahar KM, Al-Jamaan ME, Al-Mutairi FR, Al-Hudiab AM, Al-Einzi MS et al (2022) Antioxidant, antibacterial, and antifungal activities of the ethanolic extract obtained from Berberis vulgaris roots and leaves. Molecules 27:6114. https://doi.org/10.3390/molecules27186114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kamli MR, Srivastava V, Hajrah NH, Sabir JS, Ali A et al (2021) Phytogenic fabrication of Ag–Fe bimetallic nanoparticles for cell cycle arrest and apoptosis signaling pathways in Candida auris by generating oxidative stress. Antioxidants 10:182. https://doi.org/10.3390/antiox10020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mittal S, Roy S, Srivastava JN (2013) Fungicidal response of a novel natural photosensitizer (Beta vulgaris) on Candida albicans with low-power laser radiation. Laser Phys 23:055606. https://doi.org/10.1088/1054-660X/23/5/055606

    Article  CAS  Google Scholar 

  65. Saha M, Bandyopadhyay PK (2020) In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16. Microb Pathog 141:103977. https://doi.org/10.1016/j.micpath.2020.103977

    Article  CAS  PubMed  Google Scholar 

  66. Yang PF, Lu H, Wang QB, Zhao ZW, Liu Q et al (2020) Chemical composition and antimicrobial activities of the essential oil from the leaves of Pterocephalus hookeri. Nat Prod Commun 15:1–5. https://doi.org/10.1177/1934578X20981239

    Article  Google Scholar 

  67. Guimarães A, Venâncio A (2022) The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins 14:188. https://doi.org/10.3390/toxins14030188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. https://www.who.int/docs/default-source/antimicrobial-resistance/amr-factsheet.pdf. Accessed 15.02.2024.

  69. Alastruey-Izquierdo A (2022) WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization: Geneva, Switzerland. http://hdl.handle.net/20.500.12105/15113.

  70. World Health Organization (2021) Global antimicrobial resistance and use surveillance system (GLASS) report: 2021.

  71. Romero SA, Pavan I, Morelli AP, Mancini M, da Silva L et al (2021) Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa). Phytother Res 35:6191–6203. https://doi.org/10.1002/ptr.7255

    Article  CAS  PubMed  Google Scholar 

  72. Bouchmaa N, Mrid RB, Kabach I, Zouaoui Z, Karrouchi K et al (2022) Beta vulgaris subsp. maritima: a valuable food with high added health benefits. Appl Sci 12:1866. https://doi.org/10.3390/app12041866

    Article  CAS  Google Scholar 

  73. Scarpa ES, Giammanco M, Magnani M (2021) Gastrointestinal tumors: phytochemical and drug combinations targeting the hallmarks of cancer. Appl Sci 11:10077. https://doi.org/10.3390/app112110077

    Article  CAS  Google Scholar 

  74. Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M et al (2023) A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev Int 39:119–147. https://doi.org/10.1080/87559129.2021.1900230

    Article  CAS  Google Scholar 

  75. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707. https://doi.org/10.1016/j.biopha.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  76. Liu R, Ji P, Liu B, Qiao H, Wang X et al (2017) Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol Lett 13:1024–1030. https://doi.org/10.3892/ol.2016.5495

    Article  CAS  PubMed  Google Scholar 

  77. Hadipour E, Taleghani A, Tayarani-Najaran N, Tayarani-Najaran Z (2020) Biological effects of red beetroot and betalains: a review. Phytother Res 34:1847–1867. https://doi.org/10.1002/ptr.6653

    Article  CAS  PubMed  Google Scholar 

  78. Bouyahya A, Belmehdi O, Benjouad A, El Hassani RA, Amzazi S et al (2020) Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: what are the next steps? Ind Crops Prod 147:112198. https://doi.org/10.1016/j.indcrop.2020.112198

    Article  CAS  Google Scholar 

  79. Al-Sheddi ES, Al-Zaid NA, Al-Oqail MM, Al-Massarani SM, El-Gamal AA et al (2019) Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm J 27:1053–1060. https://doi.org/10.1016/j.jsps.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rajput S, Kumar BP, Dey KK, Pal I, Parekh A et al (2013) Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci 93:783–790. https://doi.org/10.1016/j.lfs.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  81. Andrade MA, Braga MA, Cesar PH, Trento MVC, Espósito MA et al (2018) Anticancer properties of essential oils: an overview. Curr Cancer Drug Targets 18:957–966. https://doi.org/10.2174/1568009618666180102105843

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Zöngür.

Ethics declarations

Conflict of ınterest

The authors did not receive support from any organization for the submitted work. Author Alper ZÖNGÜR declares that they have no conflict of interest.

Ethical approval

Since the study did not involve clinical interaction with patients, informed consent was not required. All samples were commercially obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zöngür, A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01269-8

Keywords

Navigation