Skip to main content
Log in

Validation of Lon Gene Disruption using Linear DNA Cassette by Crelox Mechanism in E. coli Strains: To Achieve Better Solubility of Putrescine Monooxygenase

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Numerous expression systems, engineered strains, and cultivation systems have been developed globally but producing recombinant proteins in the soluble form continues to remain a challenge.  Escherichia coli, a preferred host for the recombinant production of biopharmaceuticals and other proteins. Up to 75% of human proteins expressed in E. coli have only 25% in an active soluble form. The proteolytic activity of Lon encoded protease triggers the inclusion bodies leading to heterogenous secreted proteins thereby hampering downstream processing and isolation. Putrescine monooxygenases are versatile with applications in iron acquisition, pathogen control, biotransformation, bio-remediation and redox reaction are still isolated from plant and microbial sources at low yields. As a prerequisite to developing protease knockout E. coli strains, using the Cre-loxP recombination strategy we have built a full-length Lon disruption cassette (5lon-lox66-cre-KanR-lox71-3lon) (3368 bp) consisting of upstream and downstream regions of Lon, loxP sites, and Cre gene driven by T7 promoter to the expression of Cre recombinase and a selectable kanamycin resistance gene. Here, after the integration of the knock-out cassette into the host genome, we show the production of homogeneous protein species of recombinant Putrescine monooxygenase by using an E. coli platform strain in which Lon gene is deleted. This Lon knock-out strain secreted more homogeneous protein at a volumetric yield of 60% of the wild-type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demain AL, Preeti V (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306. https://doi.org/10.1016/j.biotechadv.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  2. Gupta SK, Shukla P (2016) Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 36(6):1089–1098. https://doi.org/10.3109/07388551.2015.1084264

    Article  CAS  PubMed  Google Scholar 

  3. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55:29–37. https://doi.org/10.1016/j.ymeth.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbial Biotechnol 60:523–553. https://doi.org/10.1007/s00253-002-1158-6

    Article  CAS  Google Scholar 

  5. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298. https://doi.org/10.1007/s00253-004-1814-0

    Article  CAS  PubMed  Google Scholar 

  6. Rozkov A, Schweda T, Veide A (2000) Dynamics of proteolysis band and it s influence and on the accumulation of intracellular recombination proteins. Enzyme Microb Technol 27(10):743–748. https://doi.org/10.1016/s0141-0229(00)00294-5

    Article  CAS  PubMed  Google Scholar 

  7. Pacheco B, Crombet L, Loppnau P, Cossar D (2012) A Screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment. Protein Expr Purif 81:33–41. https://doi.org/10.1016/j.pep.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  8. Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E coli B and K-12 genomes. J Mol Biol 394(4):653–80. https://doi.org/10.1016/j.jmb.2009.09.021

    Article  CAS  PubMed  Google Scholar 

  9. Hui CY, Guo Y, He QS, Peng L, Wu SC, Cao H, Huang SH (2010) Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol 54(8):452–459. https://doi.org/10.1111/j.1348-0421.2010.00238.x

    Article  CAS  PubMed  Google Scholar 

  10. Sreenivas S, Krishnaiah SM, Anil HS, Mallikarjun N, Govindappa N, Chatterjee A, Kedarnath NS (2016) Disruption of KEX1 gene reduces the proteolytic degradation of secreted two-chain Insulin glargine in Pichia pastoris. Protein Expr Purif 118:1–9. https://doi.org/10.1016/j.pep.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Yan X, Yu H, Hong Q, Li S (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74(17):5556–5562. https://doi.org/10.1128/AEM.01156-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian W, Song H, Liu Y, Zhang C, Niu Z, Wang H, Qiu B (2009) Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods 79:253–259. https://doi.org/10.1016/j.mimet.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  13. Dutra BE, Sutera VA, Lovett ST (2007) RecA-independent recombination is efficient but limited by exonucleases. PNAS 104(1):216–221.

    Article  CAS  PubMed  Google Scholar 

  14. Werten MW, Van den Bosch TJ, Wind RD, Mooibroek H, DeWolf FA (1999) High yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15:1077–1096. https://doi.org/10.1002/(SICI)1097-0061(199908)15:11

    Article  Google Scholar 

  15. Serra-Moreno R, Acosta S, Hernalsteens JP (2006) Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Molecular Biol 7:31–37. https://doi.org/10.1186/1471-2199-7-31

    Article  CAS  Google Scholar 

  16. Santos LDF, Caraty-Philippe L, Darbon E, Pernodet J-L (2022) Marker-free genome engineering in amycolatopsis using the pSAM2 site-specific recombination system. Microorganisms 10:828. https://doi.org/10.3390/microorganisms10040828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma MS, Mukherjee AK (2014) Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Fact 19(13):177. https://doi.org/10.1186/s12934-014-0177-1

    Article  CAS  Google Scholar 

  18. Srividya D, Anil HS, Saroja NR (2020) Expression and purification of codon-optimized Cre recombinase in E. coli. Protein Expr Purif 167:105546. https://doi.org/10.1016/j.pe.2019.105546

    Article  CAS  Google Scholar 

  19. Sambrook, J, Russell, DW (2001) Molecular cloning: a laboratory manual; cold spring harbor laboratory press: cold spring harbor, NY, USA, 2001; ISBN 0879695773

  20. Nikolai A, Shevchuk AV, Bryksin YA, Nusinovich F, Cabello C, Margaret S, Stephan L (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucl Acids Res 32(2):16–19. https://doi.org/10.1093/nar/gnh014

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  23. Reeder R, Sobrado P (2011) Substrate binding modulates the activity of Mycobacterium smegmatis G, a flavin-dependent monooxygenase involved in the biosynthesis of hydroxamate-containing siderophores. Biochemistry 508:489–8496. https://doi.org/10.1021/bi200933h

    Article  CAS  Google Scholar 

  24. Visser MB, Majumdar S, Hani E, Sokol PA (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72(5):2850–2857. https://doi.org/10.1128/iai.72.5.2850-2857.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saroja NR, Anil HS, Srividya D, Supreetha K (2019) Chaperone-assisted expression and purification of putrescine monooxygenase from Shewanella putrefaciens-95 Protein Expr Purif, 157:9–16. doi: https://doi.org/10.1016/j.pep.2019.01.006.

  26. Khushoo A, Pal Y, Mukherjee KJ (2005) Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Appl Microbiol Biotechnol 68(2):189–197. https://doi.org/10.1007/s00253-004-1867-0

    Article  CAS  PubMed  Google Scholar 

  27. Ohta T, Sutton MD, Guzzo A, Cole S, Ferentz AE, Walker GC (1999) Mutations affecting the ability of the Escherichia coli UmuD′ protein to participate in SOS mutagenesis. J Bacteriol 181(1):177–185. https://doi.org/10.1128/jb.181.1.177-185.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma AK, Shukla E, Janoti DS, Mukherjee KJ, Shiloach J (2020) A novel knock out strategy to enhance recombinant protein expression in Escherichia coli. Microb Cell Fact 19:148. https://doi.org/10.1186/s12934-020-01407-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan X, Yu H, Hong Q, Li S (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74:5556–5562. https://doi.org/10.1128/AEM.01156-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding by Vision Group for Science and Technology, Govt. of Karnataka, (GRD No.869)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroja Narsing Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1938 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.N., Kumari, G.M., Srividya, D. et al. Validation of Lon Gene Disruption using Linear DNA Cassette by Crelox Mechanism in E. coli Strains: To Achieve Better Solubility of Putrescine Monooxygenase. Indian J Microbiol 63, 56–64 (2023). https://doi.org/10.1007/s12088-023-01056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01056-x

Keywords

Navigation