Skip to main content

Interplay of Human Gut Microbiome in Health and Wellness

Abstract

The gut microbiome analysis, with specific interest on their direct impact towards the human health, is currently revolutionizing the unexplored frontiers of the pathogenesis and wellness. Although in-depth investigations of gut microbiome, ‘the Black Boxes’, complexities and functionalities are yet at its infancy, profound evidences are being reported for their concurrent involvement in disease etiology and its treatment. Interestingly, studies from the ‘minimal murine’ (Oligo-MM12), ‘humanized’ microbiota gnotobiotic mice models and patient samples, combined with multi-omics and cell biology approaches, have been revealing the implications of these findings in the treatment of gut dysbiosis associated diseases. Nonetheless, due to the inherent heterogeneity of the gut commensals and their unified co-existence with opportunistic pathobionts, it is utmost essential to highlight their functionalities in ‘good or bad’ gut in human wellness. We have specifically reviewed dietary lifestyle and infectious diseases linked with the gut bacterial consortia to delineate the ecobiotic approaches towards their treatment. This notably includes gut mucosal immunity mediated diseases such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc. Alongside of each dysbiosis, we have described the current therapeutic advancements of the pre- and probiotics derived from human microbiome studies to restore gut microbial homeostasis. With a continuous running debate on the role of microbiota in above mentioned diseases, we have collected numerous scientific evidences highlighting a previously unanticipated complex involvement of gut microbiome in the potential of human health.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Turnbaugh PJ, Ley E, Hamady M, Fraser-Liggett C, Knight R, Gordon J (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810. https://doi.org/10.1038/nature06244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 70:S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Price LB, Hungate BA, Koch BJ, Davis GS, Liu CM (2017) Colonizing opportunistic pathogens (COPs): the beasts in all of us. PLoS Pathog 13:e1006369. https://doi.org/10.1371/journal.ppat.1006369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R (2019) Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00808-y

    Article  Google Scholar 

  5. 5.

    Kulkarni AS, Kumbhare SV, Dhotre DP, Shouche YS (2019) Mining the core gut microbiome from a sample Indian population. Indian J Microbiol 59:90–95. https://doi.org/10.1007/s12088-018-0742-0

    Article  PubMed  Google Scholar 

  6. 6.

    Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216:20–40. https://doi.org/10.1084/jem.20180448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Buret AG, Motta JP, Allain T, Ferraz J, Wallace JL (2019) Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 26:1. https://doi.org/10.1186/s12929-018-0495-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964. https://doi.org/10.1038/nri1499

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J (2012) Composition of the adult digestive tract microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42. https://doi.org/10.1186/gb-2012-13-6-r42

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sood U, Bajaj A, Kumar R, Khurana S, Kalia VC (2018) Infection and microbiome: impact of tuberculosis on human gut microbiome of indian cohort. Indian J Microbiol 58:123–125. https://doi.org/10.1007/s12088-018-0706-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Narasimhan P, Wood J, Macintyre CR, Mathai D (2013) Risk factors for tuberculosis. Pulm Med 2013:828939. https://doi.org/10.1155/2013/828939

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hong BY, Maulén NP, Adami AJ, Granados H, Balcells ME, Cervantes J (2016) Microbiome changes during tuberculosis and antituberculous. Therapy Clin Microbiol Rev 29:915–926. https://doi.org/10.1128/CMR.00096-15

    Article  PubMed  Google Scholar 

  13. 13.

    Namasivayam S, Sher A, Glickman MS, Wipperman MF (2018) The microbiome and tuberculosis: early evidence for cross talk. MBio 9:e01420-18. https://doi.org/10.1128/mBio.01420-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, Mittal P, Thukral N, Sharma E, Singh A, Virmani R, Gaur M, Singh H, Hasija Y, Arora G, Agrawal A, Chaudhry A, Khurana JP, Sharma VK, Lal R, Singh Y (2018) Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol 20:402–419. https://doi.org/10.1111/1462-2920

  15. 15.

    Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. In: Seminars in immunopathology. Springer, Berlin vol 35, pp 563–583. https://doi.org/10.1007/s00281-013-0388-2

    CAS  Article  Google Scholar 

  16. 16.

    Balcells ME, Yokobori N, Hong B, Corbett J, Cervantes J (2019) The lung microbiome, vitamin D, and the tuberculous granuloma: a balance triangle. Microb Pathog 131:158–163. https://doi.org/10.1016/j.micpath.2019.03.041

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Namasivayam S, Maiga M, Yuan W, Thovarai V, Costa DL, Mittereder LR, Wipperman MF, Glickman MS, Dzutsev A, Trinchieri G, Sher A (2017) Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome 5:71–88. https://doi.org/10.1186/s40168-017-0286-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS (2017) Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep 7:10767. https://doi.org/10.1038/s41598-017-10346-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN (2016) Alteration in the gut microbiota provokes susceptibility to tuberculosis. Front Immunol 7:529. https://doi.org/10.3389/fimmu.2016.00529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Horsburgh CR Jr, Rubin EJ (2011) Latent tuberculosis infection in the United States. N Engl J Med 364:1441–1448. https://doi.org/10.1056/NEJMcp1005750

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sartor RB (2010) Genetics and environmental interactions shape the intestinal microbiota to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology 139:1816–1819. https://doi.org/10.1053/j.gastro.2010.10.036

    Article  PubMed  Google Scholar 

  22. 22.

    Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637. https://doi.org/10.1136/gut.2010.223263

    Article  PubMed  Google Scholar 

  23. 23.

    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Crobach MJT, Vernon JJ, Loo VG, Kong LY, Pechine S, Wilcox MH, Kuijper EJ (2018) Understanding clostridium difficile colonization. Clin Microbiol Rev 31:e00021-17. https://doi.org/10.1128/CMR.00021-17

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Castaner O, Goday A, Park YM, Lee SH, Magkos F, Shiow SATE, Schröder H (2018) The gut microbiome profile in obesity: a systematic review. Int J Endocrinol 2018:4095789. https://doi.org/10.1155/2018/4095789

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Turnbaugh PJ, Backhed F, Fulton L, Gordon J (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223. https://doi.org/10.1016/j.chom.2008.02.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36:817–825. https://doi.org/10.1038/ijo.2011.153

    CAS  Article  Google Scholar 

  28. 28.

    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    CAS  Article  Google Scholar 

  29. 29.

    Ganesan K, Chung SK, Vanamala J, Xu B (2018) Causal relationship between diet-induced gut microbiota changes and diabetes: a novel strategy to transplant faecalibacterium prausnitzii in preventing diabetes. Int J Mol Sci 19:3720. https://doi.org/10.3390/ijms19123720

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    de Oliveira TH, Amorin AT, Rezende IS, Santos Barbosa M, Martins HB, Brito AK, Andrade EF, Gonçalves GK, Campos GB, Silva RA, Timenetsky J, Marques LM (2015) Sepsis induced by Staphylococcus aureus: participation of biomarkers in a murine model. Med Sci Monit 21:345–355. https://doi.org/10.12659/MSM.892528

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ragle BE, Karginov VA, Bubeck Wardenburg J (2010) Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother 54:298–304. https://doi.org/10.1128/AAC.00973-09

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450. https://doi.org/10.1128/MMBR.00014-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Liu X, Tan J, Yang H, Gao Z, Cai Q, Meng L, Yang L (2019) Characterization of skin microbiome in tinea pedis. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00816-y

    Article  PubMed  Google Scholar 

  34. 34.

    Schwander S, Dheda K (2011) Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am J Respir Crit Care Med 183:696–707. https://doi.org/10.1164/rccm.201006-0963PP

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141. https://doi.org/10.1016/j.cell.2014.03.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lachmandas E, van den Heuvel CN, Damen MS, Cleophas MC, Netea MG, van Crevel R (2016) Diabetes mellitus and increased tuberculosis susceptibility: the role of short-chain fatty acids. J Diabetes Res 2016:6014631. https://doi.org/10.1155/2016/6014631

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S, Guo X (2012) Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol 12:276. https://doi.org/10.1186/1471-2180-12-276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    World Health Organization (2018) Global tuberculosis report 2018. World Health Organization. https://apps.who.int/iris/handle/10665/274453

  39. 39.

    Van Rie A, Warren R, Richardson M, Victor TC, Gie RP, Enarson DA, Beyers N, van Helden PD (1999) Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med 341:1174–1179. https://doi.org/10.1056/NEJM199910143411602

    Article  PubMed  Google Scholar 

  40. 40.

    Fakhoury M, Negrulj R, Mooranian A, Al-Salami H (2014) Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res 7:113–120. https://doi.org/10.2147/JIR.S65979

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:79–97. https://doi.org/10.1186/gb-2012-13-9-r79

    CAS  Article  Google Scholar 

  42. 42.

    Cosnes J, Gower-Rousseau C, Seksik P, Cortot A (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140:1785–1794. https://doi.org/10.1053/j.gastro.2011.01.055

    Article  PubMed  Google Scholar 

  43. 43.

    Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet 380:1590–1605. https://doi.org/10.1016/S0140-6736(12)60026-9

    Article  PubMed  Google Scholar 

  44. 44.

    Shah J, Etienne D, Reddy M, Kothadia JP, Shahidullah A, Baqui AAMA (2018) Crohn’s disease manifesting as a duodenal obstruction: an unusual case. Gastroenterology Res 11:436–440. https://doi.org/10.14740/gr1105

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ito A, Iizuka B, Omori T, Nakamura S, Tokushige K (2017) Development and improvement of simple colonic mucosal ulcer during treatment of severe ulcerative colitis with tacrolimus. Case Rep Gastroenterol 11:168–177. https://doi.org/10.1159/000456605

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. https://doi.org/10.1038/nrg3182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kaistha A, Levine J (2014) Inflammatory bowel disease: the classic gastrointestinal autoimmune disease. Curr Probl Pediatr Adolesc Health Care 44:328–334. https://doi.org/10.1016/j.cppeds.2014.10.003

    Article  PubMed  Google Scholar 

  48. 48.

    Zuo T, Ng SC (2018) The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 9:2247. https://doi.org/10.3389/fmicb.2018.02247

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Schroeder BO (2019) Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep (Oxf) 7:3–12. https://doi.org/10.1093/gastro/goy052

    Article  Google Scholar 

  50. 50.

    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran L, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. https://doi.org/10.1073/pnas.0804812105

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Sokol H, Lay C, Seksik P, Tannock GW (2008) Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 14:858–867. https://doi.org/10.1002/ibd.20392

    Article  PubMed  Google Scholar 

  52. 52.

    Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C (2017) A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:103. https://doi.org/10.1186/s13073-017-0490-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, Wu X, Zhang M, Sears CL (2007) Enterotoxigenic bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis 13:83–1475. https://doi.org/10.1002/ibd.20265

    Article  Google Scholar 

  54. 54.

    Ahmed I, Roy BC, Khan SA, Septer S, Umar S (2016) Microbiome, metabolome and inflammatory bowel disease. Microorganisms 4:20. https://doi.org/10.3390/microorganisms4020020

    CAS  Article  PubMed Central  Google Scholar 

  55. 55.

    Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses and inflammatory disease. Immunol Rev 279:70–89. https://doi.org/10.1111/imr.12567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Caballero S, Pamer EG (2015) Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu Rev Immunol 33:227–256. https://doi.org/10.1146/annurev-immunol-032713-120238

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, Kiguchi Y, Yasuma K, Watanabe E, Tanoue T (2017) Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358:359–365. https://doi.org/10.1126/science.aan4526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, Kimura R, Iraha A, Ishida H, Fujita J, Mano S, Morita H, Dohi T, Oota H, Hattori M (2014) Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res 21:15–25. https://doi.org/10.1093/dnares/dst037

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Veloso FT (2011) Extraintestinal manifestations of inflammatory bowel disease: do they influence treatment and outcome? World J Gastroenterol 17:2702–2707. https://doi.org/10.3748/wjg.v17.i22.2702

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, Pla J, Iliev ID (2018) CX3CR6+  mononuclear phagocytes control immunity to intestinal fungi. Science 359:232–236. https://doi.org/10.1126/science.aao1503

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y (2017) New frontiers in genetics, gut microbiota, and immunity: a rosetta stone for the pathogenesis of inflammatory bowel disease. Biomed Res Int 2017:8201672. https://doi.org/10.1155/2017/8201672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, D’Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H; International IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH (2012) Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24. https://doi.org/10.1038/nature11582

    CAS  Article  Google Scholar 

  63. 63.

    Knights D, Lassen KG, Xavier RJ (2013) Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut 62:1505–1510. https://doi.org/10.1136/gutjnl-2012-303954

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I (2014) Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 20:1192–1210. https://doi.org/10.3748/wjg.v20.i5.1192

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Nagao-Kitamoto H, Kamada N (2017) Host-microbial cross-talk in inflammatory bowel disease. Immune Netw 17:1–12. https://doi.org/10.4110/in.2017.17.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Farooq PD, Urrunaga NH, Tang DM, von Rosenvinge EC (2015) Pseudomembranous colitis. Dis Mon 61:181–206. https://doi.org/10.1016/j.disamonth.2015.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fachi JL, Felipe JS, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, da Fonseca DM, Basso PJ, Câmara NOS, de Sales E, Souza ÉL, Dos Santos Martins F, Guima SES, Thomas AM, Setubal JC, Magalhães YT, Forti FL, Candreva T, Rodrigues HG, de Jesus MB, Consonni SR, Farias ADS, Varga-Weisz P, Vinolo MAR (2019) Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep. https://doi.org/10.1016/j.celrep.2019.03.054

    Article  PubMed  Google Scholar 

  68. 68.

    Schubert AM, Rogers MA, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM, Schloss PD (2014) Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio 5:e01021-14. https://doi.org/10.1128/mBio.01021-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Milanović V, Cardinali F, Aquilanti L, Garofalo C, Roncolini A, Sabbatini R, Clementi F, Osimani A (2019) A glimpse into the microbiota of marketed ready-to-eat crickets (Acheta domesticus). Indian J Microbiol. https://doi.org/10.1007/s12088-019-00817-x

    Article  Google Scholar 

  70. 70.

    Sood U, Gupta V, Kumar R, Lal S, Fawcett D, Rattan S, Poinern GEJ, LaL R (2019) Chicken gut microbiome and human health: past scenarios, current perspectives, and futuristic applications. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00785-2

    Article  Google Scholar 

  71. 71.

    Leslie JL, Vendrov KC, Jenior ML, Young VB (2019) The gut microbiota is associated with clearance of clostridium difficile infection independent of adaptive immunity. mSphere 4:e00698-18. https://doi.org/10.1128/mspheredirect.00698-18

  72. 72.

    Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1:3–15. https://doi.org/10.1186/2049-2618-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Bakken JS (2009) Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe 15:285–289. https://doi.org/10.1016/j.anaerobe.2009.09.007

    Article  PubMed  Google Scholar 

  74. 74.

    Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9:229–239. https://doi.org/10.1177/1756283X15607414

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66. https://doi.org/10.1007/10_2008_097

    Article  PubMed  Google Scholar 

  76. 76.

    Choi HH, Cho YS (2016) Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin Endos. 49:257–265. https://doi.org/10.5946/ce.2015.117

    Article  Google Scholar 

  77. 77.

    Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9:397–403. https://doi.org/10.1007/s13238-018-0546-3

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158. https://doi.org/10.1113/jphysiol.2009.174136

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Williams BA, Grant LJ, Gidley MJ, Mikkelsen D (2017) Gut fermentation of dietary fibres: physico-chemistry of plant cell walls and implications for health. Int J Mol Sci 18:2203. https://doi.org/10.3390/ijms18102203

    CAS  Article  Google Scholar 

  80. 80.

    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075. https://doi.org/10.1073/pnas.0504978102

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M (2016) The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 15:108–116. https://doi.org/10.1186/s12944-016-0278-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ndeh D, Gilbert HJ (2018) Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 42:146–164. https://doi.org/10.1093/femsre/fuy002

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Davis CD (2016) The gut microbiome and its role in obesity. Nutr Today 51(4):167–174. https://doi.org/10.1097/NT.0000000000000167

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Shen J, Obin M, Zhao L (2013) The gut microbiota, obesity, and insulin resistance. Mol Aspects Med 34:39–58. https://doi.org/10.1016/j.mam.2012.11.001

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T, Kaufmann P, De Paula JA, Fedorak R, Shanahan F, Sanders ME, Szajewska H, Ramakrishna BS, Karakan T, Kim N (2011) World gastroenterology organisation global guidelines: probiotics and prebiotics. J Clin Gastroenterol 46:468–481. https://doi.org/10.1097/MCG.0b013e3182549092

    Article  Google Scholar 

  86. 86.

    Sharma D, Goel NK, Sharma MK, Walia DK, Thakare MM, Khaneja R (2018) Prevalence of diabetes mellitus and its predictors among tuberculosis patients currently on treatment. Indian J Community Med 43:302–306. https://doi.org/10.4103/ijcm.IJCM_230_18

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Chan YK, Estaki M, Gibson DL (2013) Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab 63:28–40. https://doi.org/10.1159/000354902

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481. https://doi.org/10.2337/db07-1403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15:73. https://doi.org/10.1186/s12967-017-1175-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96. https://doi.org/10.1038/nature14232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Vancamelbeke M, Vermeire S (2017) The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol 11:821–834. https://doi.org/10.1080/17474124.2017.1343143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. https://doi.org/10.1038/ctg.2016.54

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R (2013) Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol 51:51–64. https://doi.org/10.1530/JME-13-0079

    CAS  Article  Google Scholar 

  94. 94.

    Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. https://doi.org/10.1126/science.1058709

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J (2011) Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 48:257–273. https://doi.org/10.1007/s00592-011-0333-6

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Maratos-Flier E (2013) Metabolic disease puts up a fight: microbes, metabolism, and medication. Nat Med 19:1218–1219. https://doi.org/10.1038/nm.3373

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

NS, MG and VS gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi for providing doctoral fellowship. AP acknowledge University Grants Commission (UGC), New Delhi for doctoral fellowship. RL thanks The National Academy of Sciences, India, for support under the NASI‐Senior Scientist Platinum Jubilee Fellowship Scheme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yogendra Singh, Gyanendra P. Dubey or Rup Lal.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singhvi, N., Gupta, V., Gaur, M. et al. Interplay of Human Gut Microbiome in Health and Wellness. Indian J Microbiol 60, 26–36 (2020). https://doi.org/10.1007/s12088-019-00825-x

Download citation

Keywords

  • Gut microbiome
  • Infectious diseases
  • Intestinal immune-mediate diseases
  • Lifestyle disorders
  • Dysbiosis
  • Colonizing opportunistic pathogens
  • Pathobionts