Advertisement

Genome Investigation of a Cariogenic Pathogen with Implications in Cardiovascular Diseases

  • Srinivasan Sujitha
  • Udayakumar S. Vishnu
  • Raman Karthikeyan
  • Jagadesan Sankarasubramanian
  • Paramasamy Gunasekaran
  • Jeyaprakash RajendhranEmail author
Original Research article
  • 61 Downloads

Abstract

The proportion of people suffering from cardiovascular diseases has risen by 34% in the last 15 years in India. Cardiomyopathy is among the many forms of CVD s present. Infection of heart muscles is the suspected etiological agent for the same. Oral pathogens gaining entry into the bloodstream are responsible for such infections. Streptococcus mutans is an oral pathogen with implications in cardiovascular diseases. Previous studies have shown certain strains of S. mutans are found predominantly within atherosclerotic plaques and extirpated valves. To decipher the genetic differences responsible for endothelial cell invasion, we have sequenced the genome of Streptococcus mutans B14. Pan-genome analysis, search for adhesion proteins through a special algorithm, and protein–protein interactions search through HPIDB have been done. Pan-genome analysis of 187 whole genomes, assemblies revealed 6965 genes in total and 918 genes forming the core gene cluster. Adhesion to the endothelial cell is a critical virulence factor distinguishing virulent and non-virulent strains. Overall, 4% of the total proteins in S. mutans B14 were categorized as adhesion proteins. Protein–protein interaction between putative adhesion proteins and Human extracellular matrix components was predicted, revealing novel interactions. A conserved gene catalyzing the synthesis of branched-chain amino acids in S. mutans B14 shows possible interaction with isoforms of cathepsin protein of the ECM. This genome sequence analysis indicates towards other proteins in the S. mutans genome, which might have a specific role to play in host cell interaction.

Keywords

S. mutans B14 Endothelial cell Adhesion proteins Extracellular matrix components (ECM) 

Notes

Acknowledgements

Srinivasan Sujitha acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi for providing Junior and Senior Research Fellowship (09/201/0411/2014-EMR-I). Authors also acknowledge the UGC-CAS, NRCBS, DBT-IPLS, and DST-PURSE Programs of the School of Biological Sciences, Madurai Kamaraj University, for the facilities provided for sequencing of the genome.

Author Contributions

PG and JR designed the study. SS, USV, and RK performed genome sequencing. SS and JS analyzed the genome sequence.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they do not have any conflict of interests in the publication of this manuscript.

Human and animal rights

This study does not contain the involvement of human subjects or animals, and no experiments have been performed by any of the authors on either human subjects or animals.

Supplementary material

12088_2019_823_MOESM1_ESM.tif (5 mb)
Supplementary material 1 (TIFF 5148 kb)
12088_2019_823_MOESM2_ESM.tif (14.5 mb)
Supplementary material 2 (TIFF 14803 kb)
12088_2019_823_MOESM3_ESM.tif (1.9 mb)
Supplementary material 3 (TIFF 1949 kb)
12088_2019_823_MOESM4_ESM.tif (5.7 mb)
Supplementary material 4 (TIFF 5885 kb)
12088_2019_823_MOESM5_ESM.tif (6.6 mb)
Supplementary material 5 (TIFF 6746 kb)
12088_2019_823_MOESM6_ESM.tif (4.7 mb)
Supplementary material 6 (TIFF 4819 kb)
12088_2019_823_MOESM7_ESM.doc (32 kb)
Supplementary material 7 (DOC 32 kb)
12088_2019_823_MOESM8_ESM.doc (29 kb)
Supplementary material 8 (DOC 29 kb)
12088_2019_823_MOESM9_ESM.doc (82 kb)
Supplementary material 9 (DOC 81 kb)
12088_2019_823_MOESM10_ESM.xls (32 kb)
Supplementary material 10 (XLS 32 kb)

References

  1. 1.
  2. 2.
    Culp DJ, Robinson B, Cash MN, Bhattacharyya I, Stewart C, Cuadra-Saenz G (2015) Salivary mucin 19 glycoproteins: innate immune functions in Streptococcus mutans-induced caries in mice and evidence for expression in human saliva. J Biol Chem 290:2993–3008.  https://doi.org/10.1074/jbc.M114.597906 CrossRefGoogle Scholar
  3. 3.
    Duran-Pinedo AE, Frias-Lopez J (2015) Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microb Infect. 17:505–516.  https://doi.org/10.1016/j.micinf.2015.03.014 CrossRefGoogle Scholar
  4. 4.
    Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A (2014) The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 33:499–515.  https://doi.org/10.1007/s10096-013-1993-7 CrossRefGoogle Scholar
  5. 5.
    Nakano MM (2018) Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev. 54:22–29.  https://doi.org/10.1016/j.jdsr.2017.08.002 CrossRefGoogle Scholar
  6. 6.
    Nomura R, Nakano K, Nemoto H, Fujita K, Inagaki S, Takahashi T, Taniguchi K, Takeda M, Yoshioka H, Amano A, Ooshima T (2006) Isolation and characterization of Streptococcus mutans in heart valve and dental plaque specimens from a patient with infective endocarditis. J Med Microbiol 55:1135–1140.  https://doi.org/10.1099/jmm.0.46609-0 CrossRefGoogle Scholar
  7. 7.
    Chalupova M, Skalova A, Hajek T, Geigerova L, Kralova D, Liska P, Hecova H, Molacek J, Hrabak J (2018) Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification. Folia Microbiol (Praha) 63:707–711.  https://doi.org/10.1007/s12223-018-0611-6 CrossRefGoogle Scholar
  8. 8.
    Tubiana S, Blotière PO, Hoen B, Lesclous P, Millot S, Rudant J, Weill A, Coste J, Alla F, Duval X (2017) Dental procedures, antibiotic prophylaxis, and endocarditis among people with prosthetic heart valves: nationwide population based cohort and a case crossover study. BMJ 358:j3776.  https://doi.org/10.1136/bmj.j3776 CrossRefGoogle Scholar
  9. 9.
    Wolf D, Zirlik A, Ley K (2015) Beyond vascular inflammation—recent advances in understanding atherosclerosis. Cell Mol Life Sci 72:3853–3869.  https://doi.org/10.1007/s00018-015-1971-6 CrossRefGoogle Scholar
  10. 10.
    Sharma ML, Newbrun E (1975) Chemical composition of the washed cells of Streptococcus sanguis (804) and Streptococcus mutans (B-14). J Dent Res 54:482–486.  https://doi.org/10.1177/00220345750540031101 CrossRefGoogle Scholar
  11. 11.
    Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information in computer science and biology. In: Proceedings of the German conference on bioinformatics, GCB, Hannover, Germany, pp 45–56Google Scholar
  12. 12.
    Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444.  https://doi.org/10.1186/1471-2164-12-444 CrossRefGoogle Scholar
  13. 13.
    Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36.  https://doi.org/10.1093/nar/28.1.33 CrossRefGoogle Scholar
  14. 14.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:353–361.  https://doi.org/10.1093/nar/gkw1092 CrossRefGoogle Scholar
  15. 15.
    Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693.  https://doi.org/10.1093/bioinformatics/btv421 CrossRefGoogle Scholar
  16. 16.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.  https://doi.org/10.1093/molbev/msy096 CrossRefGoogle Scholar
  17. 17.
    Sachdeva G, Kumar K, Jain P, Ramachandran S (2005) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491.  https://doi.org/10.1093/bioinformatics/bti028 CrossRefGoogle Scholar
  18. 18.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:362–368.  https://doi.org/10.1093/nar/gkw937 CrossRefGoogle Scholar
  19. 19.
    Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FS (2003) PSORT-B: improving protein subcellular localization prediction for gram-negative bacteria. Nucleic Acids Res 31:3613–3617.  https://doi.org/10.1093/nar/gkg602 CrossRefGoogle Scholar
  20. 20.
    Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Mol Biol 300:1005–1016.  https://doi.org/10.1006/jmbi.2000.3903 CrossRefGoogle Scholar
  21. 21.
    Avilés-Reyes A, Miller JH, Simpson-Haidaris PJ, Lemos JA, Abranches J (2014) Cnm is a major virulence factor of invasive Streptococcus mutans and part of a conserved three-gene locus. Mol Oral Microbiol. 29:11–23.  https://doi.org/10.1111/omi.12041 CrossRefGoogle Scholar
  22. 22.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421.  https://doi.org/10.1186/1471-2105-10-421 CrossRefGoogle Scholar
  23. 23.
    Lévesque CM, Voronejskaia E, Huang Y-CC, Mair RW, Ellen RP, Cvitkovitch DG (2005) Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect Immun 73:3773–3777.  https://doi.org/10.1128/IAI.73.6.3773-3777.2005 CrossRefGoogle Scholar
  24. 24.
    Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24.  https://doi.org/10.1016/j.matbio.2015.06.003 CrossRefGoogle Scholar
  25. 25.
    Ammari MG, Gresham CR, McCarthy FM, Nanduri B (2016) HPIDB: a curated database for host–pathogen interactions. Database 3:103.  https://doi.org/10.1093/database/baw103 CrossRefGoogle Scholar
  26. 26.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefGoogle Scholar
  27. 27.
    Avilés-Reyes A, Freires IA, Kajfasz JK, Barbieri D, Miller JH, Lemos JA, Abranches J (2018) Whole genome sequence and phenotypic characterization of a cbm+ serotype e strain of Streptococcus mutans. Mol Oral Microbiol. 33:257–269.  https://doi.org/10.1111/omi.12222 CrossRefGoogle Scholar
  28. 28.
    Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727.  https://doi.org/10.1016/j.cell.2006.02.012 CrossRefGoogle Scholar
  29. 29.
    Nobbs A (2016) Getting to the heart of the matter: role of Streptococcus mutans adhesin Cnm in systemic disease. Virulence. 8:1–4.  https://doi.org/10.1080/21505594.2016.1212157 CrossRefGoogle Scholar
  30. 30.
    Bitoun JP, Liao S, Yao X, Ahn SJ, Isoda R, Nguyen AH, Brady LJ, Burne RA, Abranches J, Wen ZT (2012) BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. Appl Environ Microbiol 78:2914–2922.  https://doi.org/10.1128/AEM.07823-11 CrossRefGoogle Scholar
  31. 31.
    Lynch DJ, Michalek SM, Zhu M, Drake D, Qian F, Banas JA (2013) Cariogenicity of Streptococcus mutans glucan-binding protein deletion mutants. Oral Health Dent Manag. 12:191–199Google Scholar
  32. 32.
    Tuju J, Kamuyu G, Murungi LM, Osier FHA (2017) Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 152:195–206.  https://doi.org/10.1111/imm.12780 CrossRefGoogle Scholar
  33. 33.
    McClean S, Healy ME, Collins C, Carberry S, O’Shaughnessy L, Dennehy R, Adams Á, Kennelly H, Corbett JM, Carty F, Cahill LA, Callaghan M, English K, Mahon BP, Doyle S, Shinoy M (2016) Linocin and OmpW are involved in attachment of the cystic fibrosis-associated pathogen Burkholderia cepacia complex to lung epithelial cells and protect mice against infection. Infect Immun 84:1424–1437.  https://doi.org/10.1128/IAI.01248-15 CrossRefGoogle Scholar
  34. 34.
    Jarocki VM, Tacchi JL, Djordjevic SP (2015) Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 15:1075–1088.  https://doi.org/10.1002/pmic.201400386 CrossRefGoogle Scholar
  35. 35.
    Bamford CV, Francescutti T, Cameron CE, Jenkinson HF, Dymock D (2010) Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola. Mol Oral Microbiol. 25:369–383.  https://doi.org/10.1111/j.2041-1014.2010.00584.x CrossRefGoogle Scholar
  36. 36.
    Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH, Souza NM, Teixeira AR, Atzingen MV, Nascimento AL (2014) Leptospiral extracellular matrix adhesins as mediators of pathogen–host interactions. FEMS Microbiol Lett 352:129–139.  https://doi.org/10.1111/1574-6968.12349 CrossRefGoogle Scholar
  37. 37.
    Rivera-Marrero CA, Stewart J, Shafer WM, Roman J (2004) The down-regulation of cathepsin G in THP-1 monocytes after infection with Mycobacterium tuberculosis is associated with increased intracellular survival of Bacilli. Infect Immun 72:5712–5721.  https://doi.org/10.1128/IAI.72.10.5712-5721.2004 CrossRefGoogle Scholar
  38. 38.
    Salazar N, Castiblanco-Valencia MM, da Silva LB, de Castro Í, Monaris D, Masuda HP, Barbosa AS, Arêas AP (2014) Staphylococcus aureus manganese transport protein C (MntC) is an extracellular matrix- and plasminogen-binding protein. PLoS ONE 9:e112730.  https://doi.org/10.1371/journal.pone.0112730 CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • Srinivasan Sujitha
    • 1
  • Udayakumar S. Vishnu
    • 1
  • Raman Karthikeyan
    • 1
  • Jagadesan Sankarasubramanian
    • 1
  • Paramasamy Gunasekaran
    • 2
  • Jeyaprakash Rajendhran
    • 1
    Email author
  1. 1.Department of Genetics, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia
  2. 2.VIT Bhopal UniversityBhopalIndia

Personalised recommendations