Skip to main content
Log in

Flower Shaped Gold Nanoparticles: Biogenic Synthesis Strategies and Characterization

  • Original Research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbes can serve as mediators for the fabrication of complicated nano-structures, obviating the tedious and time-consuming methods of synthesis. The shape of a nanoparticle has a very prominent role in defining the functionality in prospective arenas. So, the flower shaped nanoparticles are in focus nowadays due to their enhanced electrocatalytic and optical properties as compared to the spherical ones. We present the biosynthesis of flower shaped gold nanoparticles by Bacillus subtilis RSB64 and process parameters optimization using central composite design. The two well-separated scattering spectra showing absorption peaks at 540 nm and 750 nm indicate the presence of anisotropic gold nanoparticles and the results were corroborated by transmission electron microscopy analysis. The presence of gold nanoparticles was further confirmed by energy dispersive X-ray studies. The functional groups responsible for the stability of gold nanoparticles were predicted by Fourier transform infrared spectroscopy. The gold nanoparticles biosynthesis were collective effects of three experimental process parameters viz pH, temperature and precursor concentration. These three parameters were statistically optimized wherein pH 11.0, substrate concentration 1:1 (v/v) and temperature of 50 °C resulted in the synthesis of stable flower shaped gold nanoparticles of 50 nm size. The results indicated the tailored biosynthesis of gold nanoparticles with a flower like morphology by multi process parameter analysis to finalize robust conditions for the synthesis using B. subtilis RSB64. These gold nanoflowers demonstrate increased surface area efficiency/reactivity and could be employed for sustained and controlled delivery of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh R, Sreedharan MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14:4745–4756. https://doi.org/10.1166/jnn.2014.9527

    Article  CAS  PubMed  Google Scholar 

  2. Patel SKS, Lee J-K, Kalia VC (2017) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SKS, Lee D, Lee JH, Lee JK, Kang YC, Zhang L (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7:10980. https://doi.org/10.1038/s41598-017-10777-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel SKS, Otari SV, Li J, Kim DR, Kim SC, Cho B-K, Kalia VC, Kang YC, Lee J-K (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Otari SV, Patel SKS, Kim S-Y, Haw JR, Kalia VC, Kim I-W, Lee J-K (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  CAS  PubMed  Google Scholar 

  6. Kumar A, Kim IW, Patel S, Lee J-K (2017) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104. https://doi.org/10.1007/s12088-017-0700-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho B-K, Sohn J-H, Kim DR, Kang YC, Lee J-K (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  8. Patel SKS, Gupta RK, Kumar V, Mardina P, Lestari R, Kalia VC, Cho MS, Lee JK (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00796-z

    Article  PubMed  Google Scholar 

  9. Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA (2016) Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Indian J Microbiol 56:439–444. https://doi.org/10.1007/s12088-016-0598-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Otari SV, Pawar SH, Patel SKS, Singh RK, Kim S-Y, Lee J-H, Zhang L, Lee J-K (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738. https://doi.org/10.4014/jmb.1610.10019

    Article  CAS  PubMed  Google Scholar 

  11. Otari SV, Shinde VV, Hui G, Patel SKS, Kalia VC, Kim I-W, Lee J-K (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle–decorated hybrid nanostructures as effective catalysts. Ceram Int 45:5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  12. Kumar KS, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interf 3:1418–1425. https://doi.org/10.1021/am200443j

    Article  CAS  Google Scholar 

  13. Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48. https://doi.org/10.1016/j.cis.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Camas M, Camas AS, Kyeremeh K (2018) Extracellular synthesis and characterization of gold nanoparticles using Mycobacterium sp. BRS2A-AR2 isolated from the aerial roots of the ghanaian mangrove plant. Rhizophora racemosa. Indian J. Microbiol 58:214–221. https://doi.org/10.1007/s12088-018-0710-8

    Article  CAS  PubMed  Google Scholar 

  15. Velmurugan P, Iydroose M, Lee SM, Cho M, Park JH, Balachandar V, Oh BT (2013) Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54:196–202. https://doi.org/10.1007/s12088-013-0437-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akhtar MS, Panwar J, Yun Y-S (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602. https://doi.org/10.1021/sc300118u

    Article  CAS  Google Scholar 

  17. Otari SV, Patel SKS, Jeong JH, Lee JH, Lee J-K (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv 6:86808–86816. https://doi.org/10.1039/c6ra1488k

    Article  CAS  Google Scholar 

  18. Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim IW, Lee JK (2018) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  19. Patel SKS, Choi SH, Kang YC, Lee J-K (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Wang Y, Yu Q (2010) Significant parameters in the optimization of synthesis of silver nanoparticles by chemical reduction method. J Mater Eng Perform 19:252–256. https://doi.org/10.1007/s11665-009-9486-7

    Article  CAS  Google Scholar 

  21. Mizutani N, Iwasaki T, Watano S (2015) Response surface methodology study on magnetite nanoparticle formation under hydrothermal conditions. Nanomater Nanotechno 5:1–7. https://doi.org/10.5772/60649

    Article  CAS  Google Scholar 

  22. Chowdhury S, Yusof F, Faruck OM, Sulaiman N (2016) Process optimization of silver nanoparticle synthesis using response surface methodology. Proc Eng 148:992–999. https://doi.org/10.1016/j.proeng.2016.06.552

    Article  CAS  Google Scholar 

  23. Saxena J, Sharma PK, Sharma MM, Singh A (2016) Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. SpringerPlus 5:861. https://doi.org/10.1186/s40064-016-2558-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saha N, Gupta SD (2016) Biogenic synthesis and structural characterization of polyshaped gold nanoparticles using leaf extract of Swertia chirata along with process optimization by response surface methodology (RSM). J Clust Sci 27:1419–1437. https://doi.org/10.1007/s10876-016-1009-8

    Article  CAS  Google Scholar 

  25. Barabadi H, Honary S, Ebrahimi P, Mohammadi AM, Alizadeh A, Naghibi F (2014) Microbial mediated preparation, characterization and optimization of gold nanoparticles. Braz J Microbiol 45:1493–1501. https://doi.org/10.1590/S1517-83822014000400046

    Article  CAS  PubMed  Google Scholar 

  26. Salihu A, Bala M, Bala MS (2013) Application of Plackett–Burman experimental design for lipase production by Aspergillus niger using shea butter cake. ISRN Biotechnol. https://doi.org/10.5402/2013/718352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao KJ, Paria S (2015) Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sustain Chem Eng 3:483–491. https://doi.org/10.1021/acssuschemeng.5b00022

    Article  CAS  Google Scholar 

  28. Saxena R, Singh R (2014) Contemporaneous production of amylase and protease through CCD response surface methodology by newly isolated Bacillus megaterium strain B69. Enzyme Res. https://doi.org/10.1155/2014/601046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker (1998) Phenol-Chloroform Isoamyl Alcohol (PCI) DNA Extraction. http://hosted.usf.edu/ecoimmunology/wp-content/uploads/2014/07/PCI-extraction.pdf. Accessed on 5 Jan 2017

  30. Porwal S, Singh R (2016) Cloning of merA Gene from Methylotenera Mobilis for mercury biotransformation. Indian J Microbiol 56:504–507. https://doi.org/10.1007/s12088-016-0613-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrog Energy 35:10674–10681. https://doi.org/10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  32. Patel SKS, Kondaveeti S, Otari SV, Pagolu RT, Jeong SH, Kim SC, Cho B-K, Kang YC, Lee J-K (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  33. Gupta S, Singh SP, Singh R (2014) Synergistic effect of reductase and keratinase for facile synthesis of protein-coated gold nanoparticles. J Microbiol Biotechnol 25:612–619. https://doi.org/10.4014/jmb.1411.11022

    Article  CAS  Google Scholar 

  34. Jena BK, Raj CR (2007) Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 23:4064–4070. https://doi.org/10.1021/la063243z

    Article  CAS  PubMed  Google Scholar 

  35. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2015) Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol 44:1469–1474. https://doi.org/10.3109/21691401.2015.1041640

    Article  CAS  PubMed  Google Scholar 

  36. Patel SKS, Otari SV, Kang YC, Lee JK (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/c6ra24404a

    Article  CAS  Google Scholar 

  37. Priyadarshini E, Pradhan N, Sukla LB, Panda PK, Mishra BK (2014) Biogenic synthesis of floral-shaped gold nanoparticles using a novel strain Talaromyces flavus. Ann Microbiol 64:1055–1063. https://doi.org/10.1007/s13213-013-0744-4

    Article  CAS  Google Scholar 

  38. Sreedharan SM, Gupta S, Saxena AK, Singh R (2019) Macrophomina phaseolina: microbased biorefinery for gold nanoparticle production. Ann Microbiol. https://doi.org/10.1007/s13213-018-1434-z

    Article  Google Scholar 

  39. Mishra A, Tripathy SK, Wahab R, Jeong S-H, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630. https://doi.org/10.1007/s00253-011-3556-0

    Article  CAS  PubMed  Google Scholar 

  40. Patel SKS, Choi S-H, Kang Y-C, Lee J-K (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/c6nr00346j

    Article  CAS  PubMed  Google Scholar 

  41. Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee J-K (2018) Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Anatomy, AIIMS, New Delhi, India for helping in HRTEM and EDX analysis. We also extend our sincere thanks to Indian Council of Agricultural Research (AS/8/20/2015ASR-IV) Government of India to provide financial support for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedharan, S.M., Singh, S.P. & Singh, R. Flower Shaped Gold Nanoparticles: Biogenic Synthesis Strategies and Characterization. Indian J Microbiol 59, 321–327 (2019). https://doi.org/10.1007/s12088-019-00804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00804-2

Keywords

Navigation