Skip to main content

Advertisement

Log in

Beyond the Theoretical Yields of Dark-Fermentative Biohydrogen

  • Scientific correspondence
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Theoretical hydrogen (H2) yield by dark fermentative route is 12 mol/mol of glucose. Biological H2 production yields of 3.8 mol/mol of glucose by microbes have been reported. Transient gene inactivation in combination with adaptive laboratory evolution strategy has enabled the H2 yield to exceed the stoichiometric production values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28. https://doi.org/10.1016/S0360-3199(00)00058-6

    Article  CAS  Google Scholar 

  2. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. https://doi.org/10.1007/s10295-007-0300-y

    Article  CAS  PubMed  Google Scholar 

  3. Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. https://doi.org/10.1016/j.biortech.2016.06.065

    Article  CAS  PubMed  Google Scholar 

  4. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. https://doi.org/10.1007/s12088-016-0595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. https://doi.org/10.1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  6. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel SKS, Singh R, Kumar A, Jeong J-H, Jeong S-H, Kalia VC, Kim I-W, Lee J-K (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927. https://doi.org/10.1016/j.biortech.2017.05.160

    Article  CAS  PubMed  Google Scholar 

  8. Patel SKS, Kondaveeti S, Otari SV, Pagolu RT, Jeong SH, Kim SC, Cho BK, Kang YC, Lee JK (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  9. Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee J-K (2018) Methanol peoduction from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  CAS  PubMed  Google Scholar 

  10. Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  CAS  PubMed  Google Scholar 

  11. Prakash J, Sharma R, Patel SKS, Kim IW, Kalia VC (2018) Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059. https://doi.org/10.1371/journal.pone.0199059

    Article  PubMed  PubMed Central  Google Scholar 

  12. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. https://doi.org/10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  13. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. https://doi.org/10.1038/nbt0803-845

    Article  CAS  PubMed  Google Scholar 

  15. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. https://doi.org/10.1016/S0167-7799(03)00028-3

    Article  CAS  PubMed  Google Scholar 

  16. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. https://doi.org/10.1016/S09608524(02)002122

    Article  CAS  PubMed  Google Scholar 

  17. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  18. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. https://doi.org/10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  19. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  20. Singh R, White D, Demirel Y, Kelly R, Noll K, Blum P (2018) Uncoupling fermentative synthesis of molecular hydrogen from biomass formation in Thermotoga maritima. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00998-18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Brain Pool Grant (NRF-2018H1D3A2001746) by National Research Foundation of Korea (NRF) to work at Konkuk University. This research was also supported by KU Research Professor Program of Konkuk University. This work was supported by the Energy Efficiency & Resources Core Technology Program of the KETEP, granted financial resource from the Ministry of Trade, Industry, & Energy, Republic of Korea (20153010092130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Kul Lee or Vipin C. Kalia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K.S., Lee, JK. & Kalia, V.C. Beyond the Theoretical Yields of Dark-Fermentative Biohydrogen. Indian J Microbiol 58, 529–530 (2018). https://doi.org/10.1007/s12088-018-0759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0759-4

Keywords

Navigation