Skip to main content
Log in

Development of T3SS Mutants (hrpB and hrcV) of Ralstonia solanacearum, Evaluation of Virulence Attenuation in Brinjal and Tomato—A Pre-requisite to Validate T3Es of R. solanacearum

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum is an important plant pathogen which infects a large number of agriculturally important crops. The Type Three Secretion System (T3SS) plays a major role in its pathogenicity by secreting type III effectors (T3Es) which overthrow the host defence mechanism. The secretion of T3Es is transcriptionally regulated by hrpB and its secretion is dependent on the pili formed by hrcV gene. In this study, two T3SS mutants of R. solanacearum strain Rs-09-161 viz. Rs-HrpB and Rs-HrcV were developed through insertional mutagenesis. The method of development of insertional mutant is quite simple and reliable. The plasmid integrates through homologous recombination and in vitro studies have proved that the integration was stable for several generations. The mutants are non-pathogenic on its highly susceptible hosts, brinjal and tomato inoculated by soil drench method and by petiole inoculation directly into the vascular system. Further it was observed that the colonisation ability of the mutants was also highly reduced in the susceptible host. These mutants will be useful in validating putative T3E through translocation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Álvarez B, Biosca EG, López MM (2010) On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In: Mendez Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex Research Center, Badajoz, pp 267–279

    Google Scholar 

  2. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89. https://doi.org/10.1146/annurev-phyto-081211-173000

    Article  PubMed  CAS  Google Scholar 

  3. Burstein D, Satanower S, Simovitch M, Belnik Y, Zehavi M, Yerushalmi G, Ben-Aroya S, Pupko T, Banin E (2015) Novel type III effectors in Pseudomomas aeruginosa. MBio 6:e00161-15. https://doi.org/10.1128/mbio.00161-15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sankarasubramanian J, Vishu US, Sridhar J, Gunasekaran P, Rajendhran J (2015) Pan-genome of Brucella Species. Indian J Microbiol 55:88–101. https://doi.org/10.1007/s12088-014-0486-4

    Article  CAS  Google Scholar 

  5. Mukaihara T, Tamura N (2009) Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology 155:2235–2244. https://doi.org/10.1099/mic.0.027763-0

    Article  PubMed  CAS  Google Scholar 

  6. Poueymiro M, Genin S (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12:44–52. https://doi.org/10.1016/j.mib.2008.11.008

    Article  PubMed  CAS  Google Scholar 

  7. Poueymiro M, Cazale AC, Francois JM, Parrou JL, Peeters N, Genin S (2014) A Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate. MBio 5:02065-14. https://doi.org/10.1128/mbio.02065-14

    Article  CAS  Google Scholar 

  8. Coll NS, Valls M (2013) Current knowledge on the Ralstonia solanacearum type III secretion system. Microb Biotechnol 6:614–620. https://doi.org/10.1111/1751-7915.12056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013) Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom 14:859. https://doi.org/10.1111/mpp.12038

    Article  CAS  Google Scholar 

  10. Asolkar T, Ramesh R (2017) Identification of virulence factors and type III effectors of phylotype I, Indian Ralstonia solanacearum strain Rs-09-161 and Rs-10-244. J. Genet 97:55–66. https://doi.org/10.1007/s12041-018-0894-z

    Article  CAS  Google Scholar 

  11. Mukaihara T, Tamura N, Iwabuchi M (2010) Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant Microbe Interact 23:251–262. https://doi.org/10.1094/mpmi-23-3-0251

    Article  PubMed  CAS  Google Scholar 

  12. Sole M, Popa C, Mith O, Sohn KH, Jones JD, Deslandes L et al (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant Microbe Interact 25:941–953. https://doi.org/10.1094/MPMI-12-11-0321

    Article  PubMed  CAS  Google Scholar 

  13. Bholanath M, Indrabrata B, Khatua DC (2014) Incidence of bacterial wilt disease in West Bengal, India. Acad J Agric Res 2:139–146. https://doi.org/10.15413/ajar.2014.0118

    Article  Google Scholar 

  14. Chandrashekara KN, Prasannakumar MK (2010) New host plants for Ralstonia solanacearum from India. Plant Pathol 59:1164. https://doi.org/10.1111/j.1365-3059.2010.02358.x

    Article  Google Scholar 

  15. Chandrashekara K, Prasannakumar M, Deepa M, Vani A, Khan A (2012) Prevalence of races and biotypes of Ralstonia solanacearum in India. J Plant Prot Res 52:53–58. https://doi.org/10.2478/v10045-012-0009-4

    Article  Google Scholar 

  16. Ramesh R, Achari GA, Gaitonde S (2014) Genetic diversity of Ralstonia solanacearum infecting solanaceous vegetables from India reveals the existence of unknown or newer sequevars of phylotype I strains. Eur J Plant Pathol 140:543–562. https://doi.org/10.1007/s10658-014-0487-5

    Article  CAS  Google Scholar 

  17. Kumar A, Prameela TP, Bhai RS, Siljo A, Biju CN, Anandaraj M, Vinatzer BA (2012) Small cardamom (Elettaria cardamomum Maton.) and ginger (Zingiber officinale Roxb) bacterial wilt is caused by same strain of Ralstonia solanacearum: a result revealed by multilocus sequence typing (MLST). Eur J Plant Pathol 132:477–482. https://doi.org/10.1007/s10658-011-9903-2

    Article  CAS  Google Scholar 

  18. Ramesh R, Gaitonde S, Achari G, Asolkar T, Singh NP, Carrere S et al (2014) Genome sequencing of Ralstonia solanacearum biovar 3, phylotype I, strains Rs-09-161 and Rs-10-244, isolated from eggplant and chili in India. Genome Announc 2:1–2. https://doi.org/10.1007/s10658-014-0487-5

    Article  CAS  Google Scholar 

  19. Ramesh R, Achari G, Asolkar T, Dsouza M, Singh N (2016) Management of bacterial wilt of brinjal using wild brinjal (Solanum torvum Sw) as root stock. Indian Phytopathol 69:1–6

    Google Scholar 

  20. Monteiro F, Genin S, Van Dijk I, Valls M (2012) A luminescent reporter evidences active expression of Ralstonia solanacearum type III secretion system genes throughout plant infection. Microbiology 158:2107–2116. https://doi.org/10.1099/mic.0.058610-0

    Article  PubMed  CAS  Google Scholar 

  21. Monteiro F, Sole M, Van Dijk I, Valls M (2012) A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. Mol Plant Microbe Interact 25:557–568. https://doi.org/10.1094/mpmi-07-11-0201

    Article  PubMed  CAS  Google Scholar 

  22. Meng F (2013) The virulence factors of the bacterial wilt pathogen Ralstonia solanacearum. J Plant Pathol Microbiol 4(168):10–4172. https://doi.org/10.4172/2157-7471.1000168

    Article  CAS  Google Scholar 

  23. Jacobs JM, Babujee L, Meng F, Milling A, Allen C (2012) The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. MBio 3:00114-12. https://doi.org/10.1128/mbio.00114-12

    Article  Google Scholar 

  24. Huang Q, Allen C (2000) Polygalacturonases are required for rapid colonization and full virulence of Ralstonia solanacearum on tomato plants. Physiol Mol Plant Pathol 57:77–83. https://doi.org/10.1006/pmpp.2000.0283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by Indian Council of Agricultural Research, New Delhi, India through “Outreach project on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops”—(PhytoFuRa). We are grateful to Director, ICAR- Central Coastal Agricultural Research Institute, Old Goa for providing other necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asolkar, T., Ramesh, R. Development of T3SS Mutants (hrpB and hrcV) of Ralstonia solanacearum, Evaluation of Virulence Attenuation in Brinjal and Tomato—A Pre-requisite to Validate T3Es of R. solanacearum. Indian J Microbiol 58, 372–380 (2018). https://doi.org/10.1007/s12088-018-0736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0736-y

Keywords

Navigation