Advertisement

Indian Journal of Microbiology

, Volume 58, Issue 2, pp 146–158 | Cite as

In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus gallinarum KX912244, a Gut Microbe of Bombyx mori

  • Delicia Avilla Barretto
  • Shyam Kumar Vootla
Original Research Article

Abstract

The present study reports the in vitro biological nature of the pigment produced by Staphylococcus gallinarum KX912244, isolated as the gut microflora bacterium of the insect Bombyx mori. The purified pigment was characterized as Staphyloxanthin based on bio-physical characterization techniques like Fourier transform infrared spectroscopy, high performance liquid chromatography, Proton nuclear magnetic resonance spectroscopy (1H NMR), Liquid chromatography-Mass spectroscopy and Gas chromatography-Mass spectroscopy. The Staphyloxanthin pigment presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity showing IC50 value of 54.22 µg/mL; DNA damage protection activity against reactive oxygen species and anticancer activity evaluated by cytotoxicity assay against 4 different cancer cell lines like the Dalton’s lymphoma ascites with IC50 value 6.20 ± 0.02 µg/mL, Ehrlich ascites carcinoma having IC50 value 6.48 ± 0.15 µg/mL, Adenocarcinomic human alveolar basal epithelial cells (A549 Lung carcinoma) bearing IC50 value 7.23 ± 0.11 µg/mL and Mus mucus skin melanoma (B16F10) showing IC50 value 6.58 ± 0.38 µg/mL and less cytotoxicity towards non-cancerous human fibroblast cell lines (NIH3T3) with IC50 value of 52.24 µg/mL. The present study results suggest that Staphyloxanthin acts as a potential therapeutic agent especially due to its anticancer property.

Keywords

Cancer Staphyloxanthin Staphylococcus gallinarum Bombyx mori Free radicals 

Notes

Acknowledgements

Delicia Avilla Barretto is grateful to Department of Science & Technology- Innovation in Science Pursuit for Inspired Research (DST-INSPIRE) with (Award letter number: DST/INSPIRE FELLOWSHIP/2013/349 Dated: 16-08-2013) for financial assistance to complete this research work. The authors are thankful to the technical staff of University Scientific and Instruments Centre (USIC), Karnatak University Dharwad and National Collection of Industrial Microorganisms (NCIM)- National Chemical Laboratory (NCL), Pune and for their technical support.

Supplementary material

12088_2018_718_MOESM1_ESM.docx (754 kb)
Supplementary material 1 (DOCX 753 kb)

References

  1. 1.
    Thavamani BS, Mathew M, Dhanabal SP (2014) Anticancer activity of cissampelos pareira against dalton’s lymphoma ascites bearing mice. Pharmacogn Mag 10:200–206.  https://doi.org/10.4103/0973-1296.137356 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gupta M, Mazumder UK, Kumar RS, Kumar TS (2004) Antitumor activity and antioxident role of Bauhinia racemosa against Ehrlich ascites carcinoma in Swiss albino mice. Acta Pharmacol Sin 25:1070–1076.  https://doi.org/10.1254/jphs.94.177 PubMedGoogle Scholar
  3. 3.
    Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Krumova K, Cosa G (2016) Overview of reactive oxygen species, singlet oxygen, applications in biosciences and nanosciences. Royal Society of Chemistry publishers, Britain, pp 3–21Google Scholar
  5. 5.
    Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31.  https://doi.org/10.1042/bss0610001 CrossRefPubMedGoogle Scholar
  6. 6.
    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126.  https://doi.org/10.4103/0973-7847.70902 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang S, Xu F, Zhan J (2017) Introduction of natural pigments from microorganisms. In: Bio-pigmentation and Biotechnological Implementations. Wiley-Blackwell publishers, USAGoogle Scholar
  8. 8.
    Liu GY, Nize V (2009) Color me bad: Microbial pigments as virulence factors. Trends Microbiol 9:406–413.  https://doi.org/10.1016/j.tim.2009.06.006 CrossRefGoogle Scholar
  9. 9.
    Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82.  https://doi.org/10.1016/j.molp.2014.12.007 CrossRefPubMedGoogle Scholar
  10. 10.
    Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079.  https://doi.org/10.1016/j.procbio.2013.06.006 CrossRefGoogle Scholar
  11. 11.
    Mantena RK, Wijburg OL, Vindurampulle C, Bennett-Wood VR, Walduck A, Drummond GR, Davies JK, Robins-Browne RM, Strugnell RA (2008) Reactive oxygen species are the major antibacterials against Salmonella typhimurium purine auxotrophs in the phagosome of RAW 264.7 cells. Cell Microbiol 10:1058–1073.  https://doi.org/10.1111/j.1462-5822.2007.01105.x CrossRefPubMedGoogle Scholar
  12. 12.
    Bhagavathy S, Sumathi P (2012) Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes. Asian Pac J Trop Biomed 2:109–117.  https://doi.org/10.1016/S2221-1691(11)60203-7 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tuveson RW, Larson RA, Kagan J (1998) Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J Bacteriol 170:4675–4680.  https://doi.org/10.1128/jb.170.10.4675-4680.1988 CrossRefGoogle Scholar
  14. 14.
    Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78.  https://doi.org/10.1128/MMBR.69.1.51-78.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168.  https://doi.org/10.1016/j.abb.2008.09.011 CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242.  https://doi.org/10.3390/molecules17033202 CrossRefPubMedGoogle Scholar
  17. 17.
    Marasco EK, Vay K, Schmidt-Dannert C (2006) Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem 281:31583–31593.  https://doi.org/10.1074/jbc.m606299200 CrossRefPubMedGoogle Scholar
  18. 18.
    Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J (2012) Carotenoids and apocarotenoids in cellular signaling related to cancer. Mol Nutr Food Res 56:259–269.  https://doi.org/10.1002/mnfr.201100311 CrossRefPubMedGoogle Scholar
  19. 19.
    Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS (2011) Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55:526–531.  https://doi.org/10.1128/AAC.00680-10 CrossRefPubMedGoogle Scholar
  20. 20.
    Giachino P, Engelmann S, Bischoff M (2001) ςB activity depends on RsbU in Staphylococcus aureus. J Bacteriol 183:1843–1852.  https://doi.org/10.1128/JB.183.6.1843-1852.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ak Kahlon, Roy S, Sharma A (2010) Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus. J Biomol Struct Dyn 28:201–210.  https://doi.org/10.1080/07391102.2010.10507353 CrossRefGoogle Scholar
  22. 22.
    Lang S, Livesley MA, Lambert PA, Littler WA, Elliott TS (2000) Identification of a novel antigen from Staphylococcus epidermidis. FEMS Immunol Med Microbiol 29:213–220.  https://doi.org/10.1111/j.1574-695X.2000.tb01525.x CrossRefPubMedGoogle Scholar
  23. 23.
    Clauditz A, Resch A, Wieland KP, Peschel A, Goltz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953.  https://doi.org/10.1128/IAI.00204-06 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Song Y, Liu CI, Lin FY, No JH, Hensler M, Liu YL, Jeng WY, Low J, Liu GY et al (2009) Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J Med Chem 52:3869–3880.  https://doi.org/10.1021/jm9001764 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen F, Di H, Wang Y et al (2016) Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat Chem Biol 12:174–179.  https://doi.org/10.1038/nchembio.2003 CrossRefPubMedGoogle Scholar
  26. 26.
    Rajagopal R (2009) Beneficial interactions between insects and gut bacteria. Indian J Microbiol 49:114–119.  https://doi.org/10.1007/s12088-009-0023-z CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92.  https://doi.org/10.1007/s12088-009-0023-z CrossRefPubMedGoogle Scholar
  28. 28.
    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 7:17–34.  https://doi.org/10.1146/annurev-ento-010814-020822 CrossRefGoogle Scholar
  29. 29.
    Butel MJ (2014) Probiotics, gut microbiota and health. Med Mal Infect 44:1–8.  https://doi.org/10.1016/j.medmal.2013.10.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61:1600240–1600255.  https://doi.org/10.1002/mnfr.201600240 CrossRefGoogle Scholar
  31. 31.
    Bode HB (2011) Insect-associated microorganisms as a source for novel secondary metabolites with therapeutic potential. In: Vilcinskas A (ed) Insect biotechnology. Biologically-inspired systems, vol 2. Springer, Dordrecht, pp 77–93CrossRefGoogle Scholar
  32. 32.
    Kong FD, Ma QY, Huang SZ, Wang P, Wang JF, Zhou LM, Yuan JZ, Dai HF, Zhao YX (2017) Chrodrimanins K-N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a Marine Worm, Sipunculus nudus. J Nat Prod 80:1039–1047.  https://doi.org/10.1021/acs.jnatprod.6b01061 CrossRefPubMedGoogle Scholar
  33. 33.
    Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538.  https://doi.org/10.1039/b310175b CrossRefPubMedGoogle Scholar
  34. 34.
    Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep. 26:338–362.  https://doi.org/10.1039/B703499G CrossRefPubMedGoogle Scholar
  35. 35.
    Li J, Chen G, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086.  https://doi.org/10.1021/np50121a016 CrossRefPubMedGoogle Scholar
  36. 36.
    Inerney Mc, Gregson BV, Lacey RP, Akhurst RJ, Lyons GR, Rhods SH, Smith DRJ, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus sp., Part 1: Dithiolopyrrolonne derivatives with antibiotic activity. J Nat Prod 54:774–784.  https://doi.org/10.1021/np50075a005 CrossRefGoogle Scholar
  37. 37.
    Casida LE Jr (2007) Industrial Microbiology. New Age international ltd publishers, New Delhi, India, pp 57–68Google Scholar
  38. 38.
    Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identificationof bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862.  https://doi.org/10.1128/CMR.17.4.840-862.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721.  https://doi.org/10.1099/ijs.0.038075-0 CrossRefPubMedGoogle Scholar
  40. 40.
    James GS (2010) Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene. PCR for Clinical Microbiology. Springer, USA publishers, New York, pp 209–214Google Scholar
  41. 41.
    Schaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. American Physical Society Press, New York, pp 177–178Google Scholar
  42. 42.
    Vélez SMR (2016) Guide for Carotenoid Identification in Biological Samples. J Nat Prod 79:1473–1484.  https://doi.org/10.1021/acs.jnatprod.5b00756 CrossRefGoogle Scholar
  43. 43.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5 CrossRefGoogle Scholar
  44. 44.
    Lee JC, Kim HR, Kim J, Jang YS (2002) Antioxidant property of an ethanol extract of the stem of Opuntia ficusindica var. Saboten. J Agric Food Chem 50:6490–6496.  https://doi.org/10.1021/jf020388c CrossRefPubMedGoogle Scholar
  45. 45.
    Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57–63.  https://doi.org/10.1016/0022-1759(86)90215-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Prescott H (2002) Laboratory Exercises in Microbiology, 5th edn. McGraw-Hill Higher Education publishers, Boston, pp 257–260Google Scholar
  47. 47.
    Engel P, Moran NA (2013) The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37:699–735.  https://doi.org/10.1111/1574-6976.12025 CrossRefPubMedGoogle Scholar
  48. 48.
    Parija SC (2012) Textbook of microbiology and immunology, 2nd edn. Elsevier, India, p 174Google Scholar
  49. 49.
    Sun Z, Lu Y, Zhang H, Kumar D, Liu B, Gong Y, Zhu M, Zhu L, Liang Z, Kuang S, Chen F, Hu X, Cao Xue GR, Gong C (2016) Effects of BmCPV infection on Silkworm Bombyx mori intestinal bacteria. PLoS One 11:e0146313.  https://doi.org/10.1371/journal.pone.0146313 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sreerag RS, Jayaprakas CA, Ragesh L, Kumar SN (2014) Endosymbiotic bacteria associated with the Mealy Bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). Int Sch Res Not 268491:1–8.  https://doi.org/10.1155/2014/268491 Google Scholar
  51. 51.
    Ateyyat MA, Shatnawi M, Al-Mazra’awi MS (2009) Culturable whitefly associated bacteria and their potential as biological control agents. Jordan J Biol Sci 2:139–144Google Scholar
  52. 52.
    Parfentjev IA, Catelli AR (1964) Tolerance of Staphylococcus aureus to sodium chloride. J Bacteriol 88:1–3PubMedPubMedCentralGoogle Scholar
  53. 53.
    Varzakas T, Kiokias S (2016) HPLC analysis and determination of carotenoid pigments in commercially available plant extracts. Curr Res Nutr Food Sci J 4:1–14.  https://doi.org/10.12944/CRNFSJ.4.Special-Issue1.01 CrossRefGoogle Scholar
  54. 54.
    Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498.  https://doi.org/10.1074/jbc.M505070200 CrossRefPubMedGoogle Scholar
  55. 55.
    Marshall JH, Wilmoth GJ (1981) Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol 147:900–913PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zaini RG, Brandt K, Clench MR, Le Maitre CL (2012) Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anti-Cancer Agents Med Chem 12:640–652.  https://doi.org/10.2174/187152012800617704 CrossRefGoogle Scholar
  57. 57.
    El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48.  https://doi.org/10.1016/j.abb.2004.03.007 CrossRefPubMedGoogle Scholar
  58. 58.
    Kim SH, Kim MS, Lee BY, Lee PC (2016) Generation of structurally novel short carotenoids and study of their biological activity. Sci Rep 6:1–7.  https://doi.org/10.1038/srep21987 CrossRefGoogle Scholar
  59. 59.
    Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nize V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215.  https://doi.org/10.1084/jem.20050846 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Devasagayam TP, Subramanian M, Pradhan DS, Sies H (1993) Prevention of singlet oxygen-induced dna damage by lipoate. Chem Biol Interact 86:79–92.  https://doi.org/10.1016/0009-2797(93)90113-D CrossRefPubMedGoogle Scholar
  61. 61.
    Matos HR, Marques SA, Gomes OF, Silva AA, Heimann JC, Di Mascio P, Medeiros MH (2006) Lycopene and beta-carotene protect in vivo iron-induced oxidative stress damage in rat prostate. Braz J Med Biol Res 39:203–210.  https://doi.org/10.1590/S0100-879X2006000200006 CrossRefPubMedGoogle Scholar
  62. 62.
    Nisha K, Deshwal RK (2011) Antioxidants and their protective action against DNA damage. Int J Pharm Pharmaceut Sci 3:28–32Google Scholar
  63. 63.
    Verma K, Shrivastava D, Kumar G (2015) Antioxidant activity and DNA damage inhibition in vitro by a methanolic extract of Carissa carandas (Apocynaceae) leaves. J Taibah Univ Sci 9:34–40.  https://doi.org/10.1016/j.jtusci.2014.07.001 CrossRefGoogle Scholar
  64. 64.
    Montaner B, Navarro S, Piqué M, Vilaseca M, Martinell M, Giralt E, Gil J, Pérez-Tomás R (2000) Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol 3:585–593.  https://doi.org/10.1038/sj.bjp.0703614 CrossRefGoogle Scholar
  65. 65.
    Pandey R, Chander R, Sainis KB (2007) Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. Indian J Biochem Biophys 44:295–302PubMedGoogle Scholar
  66. 66.
    Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodigiosin. Elect J Biol 5:49–61Google Scholar
  67. 67.
    Kirti K, Amita S, Priti S, Kumar AM, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol.  https://doi.org/10.1155/2014/837891 Google Scholar
  68. 68.
    Manimala MRA, Murugesan R (2014) In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. J Appl Nat Sci 6:649–653CrossRefGoogle Scholar
  69. 69.
    Umadevi K, Krishnaveni M (2013) Antibacterial activity of pigment produced from Micrococcus luteus KF532949. Internat J Chem Anal Sci 4:149–152CrossRefGoogle Scholar
  70. 70.
    El-Shouny WA, Al-Baidani ARH, Hamza WT (2011) Antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from surgical wound-infections. Intl J Pharm Med Sci 1:01–07Google Scholar

Copyright information

© Association of Microbiologists of India 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and MicrobiologyKarnatak UniversityDharwadIndia

Personalised recommendations