Skip to main content

Advertisement

Log in

Integrated Artificial Intelligence Approaches for Disease Diagnostics

  • Opinion Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu C, Zhang L, Liu H, Cheng K (2017) Delivery strategies of the CRISPR-Cas9 gene- editing system for therapeutic applications. J Control Release 266:17–26. https://doi.org/10.1016/j.jconrel.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Wen J, Zhang Z, Liu H, Sun Y (2015) Voyage inside the cell: microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst Nanoeng 1:15020. https://doi.org/10.1038/micronano.2015.20

    Article  CAS  Google Scholar 

  3. Siuly S, Zhang Y (2016) Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci Eng 1:54–64. https://doi.org/10.1007/s41019-016-0011-3

    Article  Google Scholar 

  4. Zarei M (2017) Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron 98:494–506. https://doi.org/10.1016/j.bios.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  5. Karsten SL, Tarhan MC, Kudo LC, Collard D, Fujita H (2015) Point-of-care (POC) devices by means of advanced MEMS. Talanta 145:55–59. https://doi.org/10.1016/j.talanta.2015.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dos Santos FLC, Paci M, Nanni L, Brahnam S, Hyttinen J (2015) Computer vision for virus image classification. Biosystems Eng 138:11–22. https://doi.org/10.1016/j.biosystemseng.2015.01.005

    Article  Google Scholar 

  7. Qiu X, Ge S, Gao P, Li K, Yang S, Zhang S, Ye X, Xia N, Qian S (2017) A smartphone-based point-of-care diagnosis of H1N1 with microfluidic convection PCR. Microsyst Technol 23:2951–2956. https://doi.org/10.1007/s00542-016-2979-z

    Article  Google Scholar 

  8. Chakradhar S (2017) Predictable response: finding optimal drugs and doses using artificial intelligence. Nat Med 23:1244–1247. https://doi.org/10.1038/nm1117-1244

    Article  CAS  PubMed  Google Scholar 

  9. Sareen S, Gupta SK, Sood SK (2017) An intelligent and secure system for predicting and preventing Zika virus outbreak using Fog computing. Enterp Inf Syst 11:1436–1456. https://doi.org/10.1080/17517575.2016.1277558

    Google Scholar 

  10. Cao Y, Liu C, Liu B, Brunette MJ, Zhang N, Sun T, Zhang P, Peinado J, Garavito ES, Garcia LL, Curioso WH (2017) Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor communities in Peru. Smart Health 1:66–76. https://doi.org/10.1109/chase.2016.18

    Google Scholar 

  11. Li B, Li B, Guo T, Sun Z, Li X, Li X, Chen L, Zhao J, Mao Y (2017) Artificial neural network models for early diagnosis of hepatocellular carcinoma using serum levels of α-fetoprotein, α-fetoprotein-L3, des-γ-carboxy prothrombin, and golgi protein. Oncotarget 8:80521–80530. https://doi.org/10.18632/oncotarget.19298

    PubMed  PubMed Central  Google Scholar 

  12. Cheng Y, Liu C, Zhang N, Wang S, Zhang Z (2014) Proteomics analysis for finding serum markers of ovarian cancer. BioMed Res 2014:1–9. https://doi.org/10.1155/2014/179040

    Article  Google Scholar 

  13. Kumar V, Chhabra D, Shukla P (2017) Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. Bioresour Technol 243:1009–1019. https://doi.org/10.1016/j.biortech.2017.07.094

    Article  CAS  PubMed  Google Scholar 

  14. Baweja M, Singh PK, Shukla P (2016) Enzyme technology, functional proteomics and systems biology toward unraveling molecular basis for functionality and interactions in biotechnological processes. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer, India, pp 207–212. https://doi.org/10.1007/978-81-322-2610-9_13

    Chapter  Google Scholar 

  15. Vijayvargiya S, Shukla P (2013) Regulatory motif identification in biological sequences: an overview of computational methodologies. In: Shukla P, Pletschke B (eds) Advances in enzyme biotechnology. Springer, India, pp 111–124. https://doi.org/10.1007/978-81-322-1094-8_8

    Chapter  Google Scholar 

  16. Kurzrock R, Stewart DJ (2016) Click chemistry, 3D-printing, and omics: the future of drug development. Oncotarget 7:2155. https://doi.org/10.18632/oncotarget.6787

    Article  PubMed  Google Scholar 

  17. Daneshmand M, Bilici O, Bolotnikova A, Anbarjafari G (2017) Medical robots with potential applications in participatory and opportunistic remote sensing: a review. Robot Auton Syst 95:160–180. https://doi.org/10.1016/j.robot.2017.06.009

    Article  Google Scholar 

  18. Tonutti M, Gras G, Yang GZ (2017) A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 80:39–47. https://doi.org/10.1016/j.artmed.2017.07.004

    Article  PubMed  Google Scholar 

  19. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Kumar R, Koul S, Kumar P, Kalia VC (2016) Searching biomarkers in the sequenced genomes of Staphylococcus for their rapid identification. Indian J Microbiol 56:64–71. https://doi.org/10.1007/s12088-016-0565-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koul S, Kumar P, Kalia VC (2015) A unique genome wide approach to search novel markers for rapid identification of bacterial pathogens. J Mol Genet Med 9:194. https://doi.org/10.4172/1747-0862.1000194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashistha, R., Chhabra, D. & Shukla, P. Integrated Artificial Intelligence Approaches for Disease Diagnostics. Indian J Microbiol 58, 252–255 (2018). https://doi.org/10.1007/s12088-018-0708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0708-2

Keywords

Navigation