Skip to main content

Advertisement

Log in

Wastewater: A Potential Bioenergy Resource

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H2 and CH4). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H2 and CH4 production despite its huge potential for complete waste degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farghaly A, Tawfik A, Danial A (2016) Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater. Environ Sci Pollut Res 23:3834–3846. https://doi.org/10.1007/s11356-015-5652-7

    Article  CAS  Google Scholar 

  2. Mohan SV, Sarkar O (2017) Waste to biohydrogen: addressing sustainability with biorefinery. In: Raghavan K, Ghosh P (eds) Energy engineering. Springer, Singapore, pp 29–37. https://doi.org/10.1007/978-981-10-3102-1_4

    Chapter  Google Scholar 

  3. Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manag 140:133–144. https://doi.org/10.1016/j.enconman.2017.02.080

    Article  CAS  Google Scholar 

  4. Chookaew T, Sompong O, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrog Energy 39:9580–9587. https://doi.org/10.1016/j.ijhydene.2014.04.083

    Article  CAS  Google Scholar 

  5. Gomes SD, Fuess LT, Mañunga T, de Lima Gomes PCF, Zaiat M (2016) Bacteriocins of lactic acid bacteria as a hindering factor for biohydrogen production from cassava flour wastewater in a continuous multiple tube reactor. Int J Hydrog Energy 41:8120–8131. https://doi.org/10.1016/j.ijhydene.2015.11.186

    Article  CAS  Google Scholar 

  6. Hemalatha M, Sravan JS, Yeruva DK, Mohan SV (2017) Integrated ecotechnology approach towards treatment of complex wastewater with simultaneous bioenergy production. Bioresour Technol 242:60–67. https://doi.org/10.1016/j.biortech.2017.03.118

    Article  CAS  PubMed  Google Scholar 

  7. Abdallah R, Djelal H, Amrane A, Sayed W, Fourcade F, Labasque T, Geneste F, Taha S, Floner D (2016) Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electro reduction. Int J Hydrog Energy 41:5445–5455. https://doi.org/10.1016/j.ijhydene.2016.02.030

    Article  CAS  Google Scholar 

  8. Khongkliang P, Kongjan P, Utarapichat B, Reungsang A, Sompong O (2017) Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. Int J Hydrog Energy 42:27584–27592. https://doi.org/10.1016/j.ijhydene.2017.06.145

    Article  CAS  Google Scholar 

  9. Koch K, Helmreich B, Drewes JE (2015) Co-digestion of food waste in municipal wastewater treatment plants: effect of different mixtures on methane yield and hydrolysis rate constant. Appl Energy 137:250–255. https://doi.org/10.1016/j.apenergy.2014.10.025

    Article  CAS  Google Scholar 

  10. dos Reis CM, Carosia MF, Sakamoto IK, Varesche MBA, Silva EL (2015) Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. Int J Hydrog Energy 40:8498–8509. https://doi.org/10.1016/j.ijhydene.2015.04.136

    Article  Google Scholar 

  11. Ning L, Jianhui Z, Rui-na L, Yong-feng L, Nan-qi R (2015) Biological fermentative methane production from brown sugar wastewater in a two-phase anaerobic system. J Fundam Renew Energy Appl 5:181. https://doi.org/10.4172/2090-4541.1000181

    Google Scholar 

  12. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  13. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. https://doi.org/10.1016/j.tibtech.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  14. Heidrich ES, Dolfing J, Scott K, Edwards SR, Jones C, Curtis TP (2013) Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97:6979–6989. https://doi.org/10.1007/s00253-012-4456-7

    Article  CAS  PubMed  Google Scholar 

  15. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265. https://doi.org/10.1263/jbb.100.260

    Article  CAS  PubMed  Google Scholar 

  16. Lin CY, Lay CH, Sen B, Chu CY, Kumar G, Chen CC, Chang JS (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072

    Article  CAS  Google Scholar 

  17. Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535. https://doi.org/10.1021/es015783i

    Article  CAS  PubMed  Google Scholar 

  18. Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30:1535–1542. https://doi.org/10.1016/j.ijhydene.2004.09.017

    Article  Google Scholar 

  19. Seo YH, Yun YM, Lee H, Han JI (2015) Pretreatment of cheese whey for hydrogen production using a simple hydrodynamic cavitation system under alkaline condition. Fuel 150:202–207. https://doi.org/10.1016/j.fuel.2015.01.100

    Article  CAS  Google Scholar 

  20. Lin R, Cheng J, Yang Z, Ding L, Zhang J, Zhou J, Cen K (2016) Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal. Bioresour Technol 214:686–691. https://doi.org/10.1016/j.biortech.2016.05.037

    Article  CAS  PubMed  Google Scholar 

  21. Ramprakash B, Muthukumar K (2015) Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater. Int J Hydrog Energy 40:9106–9112. https://doi.org/10.1016/j.ijhydene.2015.05.027

    Article  CAS  Google Scholar 

  22. Wang S, Zhang T, Su H (2016) Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renew Energy 96:1135–1141. https://doi.org/10.1016/j.renene.2015.11.072

    Article  CAS  Google Scholar 

  23. Jung KW, Kim DH, Shin HS (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35:13370–13378. https://doi.org/10.1016/j.ijhydene.2009.11.120

    Article  CAS  Google Scholar 

  24. Lima DMF, Zaiat M (2012) The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. Int J Hydrog Energy 37:9630–9635. https://doi.org/10.1016/j.ijhydene.2012.03.097

    Article  Google Scholar 

  25. Rosa PRF, Santos SC, Silva EL (2014) Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. Int J Hydrog Energy 39:1288–1296. https://doi.org/10.1016/j.ijhydene.2013.11.011

    Article  CAS  Google Scholar 

  26. Muri P, Marinšek-Logar R, Djinovića P, Pintar A (2017) Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2017.10.008

    PubMed  Google Scholar 

  27. Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27:1359–1365. https://doi.org/10.1016/S0360-3199(02)00073-3

    Article  CAS  Google Scholar 

  28. Júnior ADNF, Etchebehere C, Zaiat M (2015) Mesophilic hydrogen production in acidogenic packed-bed reactors (APBR) using raw sugarcane vinasse as substrate: influence of support materials. Anaerobe 34:94–105. https://doi.org/10.1016/j.anaerobe.2015.04.008

    Article  Google Scholar 

  29. Rosa PRF, Gomes BC, Varesche MBA, Silva EL (2016) Characterization and antimicrobial activity of lactic acid bacteria from fermentative bioreactors during hydrogen production using cassava processing wastewater. Chem Eng J 284:1–9. https://doi.org/10.1016/j.cej.2015.08.088

    Article  CAS  Google Scholar 

  30. Jaikeaw S, Chavadej S (2017) Separate production of hydrogen and methane from ethanol wastewater using two-stage UASB: micronutrient transportation. Int J Chem Mol Eng 11:1. https://doi.org/10.1999/1307-6892/66190

    Google Scholar 

  31. Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, Yuan X (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrog Energy 31:1306–1313. https://doi.org/10.1016/j.ijhydene.2005.11.018

    Article  CAS  Google Scholar 

  32. Intanoo P, Chaimongkol P, Chavadej S (2016) Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasis on maximum hydrogen production. Int J Hydrog Energy 41:6107–6114. https://doi.org/10.1016/j.ijhydene.2015.10.125

    Article  CAS  Google Scholar 

  33. Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S (2010) Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, COD: N ratio, and organic acid composition. Int J Hydrog Energy 35:4092–4102. https://doi.org/10.1016/j.ijhydene.2010.02.030

    Article  CAS  Google Scholar 

  34. Searmsirimongkol P, Rangsunvigit P, Leethochawalit M, Chavadej S (2011) Hydrogen production from alcohol distillery wastewater containing high potassium and sulfate using an anaerobic sequencing batch reactor. Int J Hydrog Energy 36:12810–12821. https://doi.org/10.1016/j.ijhydene.2011.07.080

    Article  CAS  Google Scholar 

  35. Tangkathitipong P, Intanoo P, Butpan J, Chavadej S (2017) Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR). Renew Energy 113:1077–1085. https://doi.org/10.1016/j.renene.2017.06.056

    Article  CAS  Google Scholar 

  36. Azbar N, Dokgöz FTÇ, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34:7441–7447. https://doi.org/10.1016/j.ijhydene.2009.04.032

    Article  CAS  Google Scholar 

  37. Prakash J, Gupta RK, Priyanka XX, Kalia VC (2017) Bioprocessing of biodiesel industry effluent by immobilized bacteria to produce value-added products. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2637-7

    PubMed  Google Scholar 

  38. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111. https://doi.org/10.1007/s12088-016-0616-2

    Article  CAS  PubMed  Google Scholar 

  39. Sivagurunathan P, Sen B, Lin CY (2015) High-rate fermentative hydrogen production from beverage wastewater. Appl Energy 147:1–9. https://doi.org/10.1016/j.apenergy.2015.01.136

    Article  CAS  Google Scholar 

  40. Chu CY, Hastuti ZD, Dewi EL, Purwanto WW, Priyanto U (2016) Enhancing strategy on renewable hydrogen production in a continuous bioreactor with packed biofilter from sugary wastewater. Int J Hydrog Energy 41:4404–4412. https://doi.org/10.1016/j.ijhydene.2015.06.132

    Article  CAS  Google Scholar 

  41. Zhang Y, Shi H, Qian Y (2003) Biological treatment of printing ink wastewater. Water Sci Technol 47:271–276. https://www.ncbi.nlm.nih.gov/pubmed/12578205

  42. He Q, Yao K, Sun D, Shi B (2007) Biodegradability of tannin-containing wastewater from leather industry. Biodegradation 18:465–472. https://doi.org/10.1007/s10532-006-9079-1

    Article  CAS  PubMed  Google Scholar 

  43. Han W, Wang B, Zhou Y, Wang DX, Wang Y, Yue LR, Ren NQ (2012) Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor. Bioresour Technol 110:219–223. https://doi.org/10.1016/j.biortech.2012.01.057

    Article  CAS  PubMed  Google Scholar 

  44. Limwattanalert N (2011) Hydrogen production from ethanol wastewater by using upflow anaerobic sludge blanket reactor [M.S. thesis]. The Petroleum and Petrochemical College, Chulalongkorn University; 2011. http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/8629

  45. Intanoo P, Rangsanvigit P, Malakul P, Chavadej S (2014) Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol 173:256–265. https://doi.org/10.1016/j.biortech.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  46. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. https://doi.org/10.1007/s12088-016-0583-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kothari R, Kumar V, Pathak VV, Tyagi VV (2017) Sequential hydrogen and methane production with simultaneous treatment of dairy industry wastewater: bioenergy profit approach. Int J Hydrog Energy 42:4870–4879. https://doi.org/10.1016/j.ijhydene.2016.11.163

    Article  CAS  Google Scholar 

  48. Oh SE, Van Ginkel SW, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37:5186–5190. https://doi.org/10.1021/es034291y

    Article  CAS  PubMed  Google Scholar 

  49. Lay CH, Chen CC, Lin HC, Lin CY, Lee CW, Lin CY (2010) Optimal pH and substrate concentration for fermentative hydrogen production from preserved fruits soaking solution. J Environ Eng Manag 20:35–41. http://ev214.ev.ntu.edu.tw/20(1)/J.%20Environ.%20Eng.%20Manage.,%2020(1)%2035-41%20(2010).pdf

  50. Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. Bioresour Technol 159:55–63. https://doi.org/10.1016/j.biortech.2014.02.051

    Article  CAS  PubMed  Google Scholar 

  51. Tawfik A, Salem A (2012) The effect of organic loading rate on bio-hydrogen production from pre-treated rice straw waste via mesophilic up-flow anaerobic reactor. Bioresour Technol 107:186–190. https://doi.org/10.1016/j.biortech.2011.11.086

    Article  CAS  PubMed  Google Scholar 

  52. Li C, Fang HH (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. https://doi.org/10.1080/10643380600729071

    Article  Google Scholar 

  53. Van Ginkel SW, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730. https://doi.org/10.1021/es001979r

    Article  CAS  PubMed  Google Scholar 

  54. Chang JS, Lee KS, Lin PJ (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27:1167–1174. https://doi.org/10.1016/S0360-3199(02)00130-1

    Article  CAS  Google Scholar 

  55. Chen CC, Lin CY (2003) Using sucrose as a substrate in an anaerobic hydrogen producing reactor. Adv Environ Res 7:695–699. https://doi.org/10.1016/S1093-0191(02)00035-7

    Article  CAS  Google Scholar 

  56. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Int J Hydrog Energy 30:471–483. https://doi.org/10.1016/j.ijhydene.2004.04.003

    Article  CAS  Google Scholar 

  57. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371. https://doi.org/10.1016/S0360-3199(02)00120-9

    Article  CAS  Google Scholar 

  58. Thanwised P, Wirojanagud W, Reungsang A (2012) Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). Int J Hydrog Energy 37:15503–15510. https://doi.org/10.1016/j.ijhydene.2012.02.068

    Article  CAS  Google Scholar 

  59. Liu CM, Zheng JL, Wu SY, Chu CY (2016) Fermentative hydrogen production potential from washing wastewater of beverage production process. Int J Hydrog Energy 41:4466–4473. https://doi.org/10.1016/j.ijhydene.2015.08.079

    Article  CAS  Google Scholar 

  60. Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/Domestic Waste.pdf

  61. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. https://doi.org/10.1007/s12088-014-0467-7

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431. https://doi.org/10.1016/j.biortech.2011.02.113

    Article  CAS  PubMed  Google Scholar 

  63. Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117. https://doi.org/10.1016/j.biortech.2012.12.168

    Article  CAS  PubMed  Google Scholar 

  64. Salem AH, Mietzel T, Brunstermann R, Widmann R (2017) Effect of cell immobilization, hematite nanoparticles and formation of hydrogen-producing granules on biohydrogen production from sucrose wastewater. Int J Hydrog Energy 42:25225–25233. https://doi.org/10.1016/j.ijhydene.2017.08.060

    Article  CAS  Google Scholar 

  65. Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2014) Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia 54:417–430. https://doi.org/10.1016/j.egypro.2014.07.284

    Article  CAS  Google Scholar 

  66. Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:4502–4511. https://doi.org/10.1016/j.ijhydene.2015.02.046

    Article  CAS  Google Scholar 

  67. Gadhe A, Sonawane SS, Varma MN (2015) Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int J Hydrog Energy 40:10734–10743. https://doi.org/10.1016/j.ijhydene.2015.05.198

    Article  CAS  Google Scholar 

  68. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506. https://doi.org/10.1016/j.jiec.2014.03.011

    Article  CAS  Google Scholar 

  69. Mohan SV, Mohanakrishna G, Reddy SS, Raju BD, Rao KR, Sarma PN (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int J Hydrog Energy 33:6133–6142. https://doi.org/10.1016/j.ijhydene.2008.07.096

    Article  CAS  Google Scholar 

  70. Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper anoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrog Energy 41:10639–10645. https://doi.org/10.1016/j.ijhydene.2016.04.197

    Article  CAS  Google Scholar 

  71. Zhao Y, Chen Y (2011) Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge. Environ Sci Technol 45:8589–8595. https://doi.org/10.1021/es2016186

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32:17–23. https://doi.org/10.1016/j.ijhydene.2006.06.004

    Article  Google Scholar 

  73. Patel SKS, Lee JK, Kalia VC (2017) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol. https://doi.org/10.1007/s12088-017-0678-9

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Director of CSIR- Institute of Genomics and Integrative Biology (CSIR-IGIB), and CSIR-HRD (ES Scheme No. 21(1022)/16/EMR-II) for providing the necessary funds, facilities and moral support. Authors are also thankful to Academy of Scientific and Innovative Research (AcSIR), New Delhi and JP is also thankful to University Grants Commission (UGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsana Prakash.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Sharma, R., Ray, S. et al. Wastewater: A Potential Bioenergy Resource. Indian J Microbiol 58, 127–137 (2018). https://doi.org/10.1007/s12088-017-0703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0703-z

Keywords

Navigation