Skip to main content
Log in

7,10-Epoxyoctadeca-7,9-dienoic Acid: A Small Molecule Adjuvant That Potentiates β-Lactam Antibiotics Against Multidrug-Resistant Staphylococcus aureus

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infections with multi-drug resistance needs effective and alternative control strategies. In this study we investigated the adjuvant effect of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against multidrug-resistant S. aureus (MDRSA) strain 01ST001 by disc diffusion, checker board and time kill assays. Further the membrane targeting action of 7,10-EODA was investigated by spectroscopic and confocal microscopic studies. 7,10-EODA exerted synergistic activity along with β-lactam antibiotics against all clinical MRSA strains, with a mean fractional inhibitory concentration index below 0.5. In time-kill kinetic study, combination of 7,10-EODA with oxacillin, ampicillin, and penicillin resulted in 3.8–4.2 log10 reduction in the viable counts of MDRSA 01ST001. Further, 7,10-EODA dose dependently altered the membrane integrity (p < 0.001) and increased the binding of fluorescent analog of penicillin, Bocillin-FL to the MDRSA cells. The membrane action of 7,10-EODA further facilitated the uptake of several other antibiotics in MDRSA. The results of the present study suggested that 7,10-EODA could be a novel antibiotic adjuvant, especially useful in repurposing β-lactam antibiotics against multidrug-resistant MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzie T, Peters G (2012) New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39:96–104. doi:10.1016/j.ijantimicag.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  2. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687. doi:10.1128/CMR.00081-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grundmann H, Aires-de-sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885. doi:10.1016/S0140-6736(06)68853-3

    Article  PubMed  Google Scholar 

  4. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK, Active Bacterial Core surveillance (ABCs) MRSA Investigators (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771. doi:10.1001/jama.298.15.1763

    Article  CAS  PubMed  Google Scholar 

  5. Brown D (2015) Antibiotic resistance breakers can repurpose drugs to fill the antibiotic discovery void. Nat Rev Drug Discov 14:821–832. doi:10.1038/nrd4675

    Article  CAS  PubMed  Google Scholar 

  6. Friedman M (2015) Antibiotic-resistant bacteria: prevalence in food and inactivation by food compatible compounds and plant extracts. J Agric Food Chem 63:3805–3822. doi:10.1021/acs.jafc.5b00778

    Article  CAS  PubMed  Google Scholar 

  7. Desbios AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85:1629–1642. doi:10.1007/s00253-009-2355-3

    Article  Google Scholar 

  8. Speiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for cardioprotective effect of fish diet? Lipids 40:755–771. doi:10.1007/s11745-005-1438-5

    Article  Google Scholar 

  9. Ishii K, Okajima H, Okada Y, Watanabe H (1989) Effects of phosphatidylcholines containing furan fatty acid on oxidation in multi lamellar liposomes. Chem Pharm Bull 37:1396–1398. doi:10.1248/cpb.37.1396

    Article  CAS  Google Scholar 

  10. Teixeira A, Cox RC, Egmond MR (2013) Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress. Food Funct 4:1209–1215. doi:10.1039/c3fo60094g

    Article  CAS  PubMed  Google Scholar 

  11. Wakimoto T, Kondo H, Nii H, Kimura K, Egami Y, Oka Y, Yoshida M, Kida E, Ye Y, Akahoshi S, Asakawa T, Matsumura K, Ishida H, Nukaya H, Tsuji K, Kan T, Abe I (2011) Furan fatty acid as an anti-inflammatory component from the green lipped mussel Perna canaliculus. Proc Natl Acad Sci 108:17533–17537. doi:10.1073/pnas.1110577108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knechtle P, Diefenbacher M, Greve KB, Brianza F, Folly C, Heider H, Lone MA, Long L, Meyer JP, Roussel P, Ghannoum MA, Schneiter R, Sorensen AS (2014) The natural diyene-furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin detmatophytosis. Antimicrob Agents Chemother 58:1455–1466. doi:10.1128/AAC.01443-13

    Article  Google Scholar 

  13. Ellamar JB, Song KS, Kim HR (2011) One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid. J Agric Food Chem 59:8175–8179. doi:10.1021/jf2015683

    Article  CAS  PubMed  Google Scholar 

  14. Dasagrandhi C, Ellamar JB, Kim YS, Kim HR (2016) Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus. Food Sci Biotechnol 25:1671–1675. doi:10.1007/s10068-016-0257-6

    Article  CAS  Google Scholar 

  15. Clinical and Laboratory and Standards Institute (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards. CLSI document M07-A10, 10th edn. Clinical and Laboratory and Standards Institute, Pennsylvania

    Google Scholar 

  16. Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, Pinho MG, Cheung AL (2015) Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gram-negative pathogens. Antimicrob Agents Chemother 59:1876–1885. doi:10.1128/AAC.04164-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabral V, Luo X, Junqueira E, Costa SS, Mulhovo S, Duarte A, Couto I, Viveiros M, Ferreira MJ (2015) Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine 25:769–772. doi:10.1016/j.phymed.2015.02.003

    Google Scholar 

  18. Cottagnoud P, Cottagnoud M, Tauber MG (2003) Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob Agents Chemother 47:144–147. doi:10.1128/AAC.47.1.144-147.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO (2012) Membrane disruption by antimicrobial fatty acids releases low molecular weight proteins from Staphylococcus aureus. J Bacteriol 194:5294–5530. doi:10.1128/JB.00743-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernal P, Lemaire S, Pinho MG, Mobashery S, Hinds J, Taylor PW (2010) Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupt penicillin-binding protein (PBP) 2a mediated β-lactam resistance by delocalizing PBP2. J Biol Chem 285:24055–24065. doi:10.1074/jbc.M110.114793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marks LR, Clement EA, Hakansson AP (2013) Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET. PLoS ONE 8:e63158. doi:10.1371/journal.pone.0063158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hess DI, Stanley MJH, Wells CL (2014) Antibacterial synergy of glycerol monolaurate and aminoglycosides in S. aureus biofilms. Antimicrob Agents Chemother 58:6970–6973. doi:10.1128/AAC.03672-14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gilbertson JR, Langkamp HH, Connamacher R, Platt D (1984) Use of lipids to potentiate the antibacterial activity of aminoglycosides. Antimicrob Agents Chemother 26:306–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang R, Kang OH, Seo YS, Mun SH, Zhou T, Shin DW, Kwon DY (2016) The inhibition effect of chlorpromazine against the β-lactam resistance of MRSA. Asian Pac J Trop Dis 9:542–546. doi:10.1016/j.apjtm.2016.04.008

    Article  Google Scholar 

  25. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum sensing inhibitors. Microb Ecol 68:13–23. doi:10.1007/s00248-013-0316-y

    Article  CAS  PubMed  Google Scholar 

  26. Chan BC, Han XQ, Lui SL, Wong CW, Wang TB, Cheung DW, Cheng SW, Ip M, Han SQ, Yang XS, Jolivalt C, Lau CB, Leung PC, Fung KP (2014) Combating against methicillin-resistant Staphylococcus aureus-two fatty acids from Purslane (Portulaca oleracear L) exhibit synergistic effect with erythromycin. J Pharm Pharmacol 67:107–116. doi:10.1111/jphp.12315

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and future planning (2015R1A2A2A01005656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Ryul Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasagrandhi, C., Kim, YS., Kim, IH. et al. 7,10-Epoxyoctadeca-7,9-dienoic Acid: A Small Molecule Adjuvant That Potentiates β-Lactam Antibiotics Against Multidrug-Resistant Staphylococcus aureus . Indian J Microbiol 57, 461–469 (2017). https://doi.org/10.1007/s12088-017-0680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0680-2

Keywords

Navigation