Skip to main content

Advertisement

Log in

Improved Sprouting and Growth of Mung Plants in Chromate Contaminated Soils Treated with Marine Strains of Staphylococcus Species

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Marine bacteria possess a wide variety of bioremediation potential which is beneficial environmentally and economically. In this study, bacterial isolates from marine waters were screened for tolerance and growth in high concentrations of chromate (Cr6+). Two isolates, capable of tolerating Cr6+ concentrations 300 µg mL−1 or higher, and found to completely reduce 20 µg mL−1 Cr6+ were grown in Cr6+ (50 and 100 mg kg−1) spiked garden soil. Notably, both facilitated normal germination and growth of mung (Vigna radiata) seeds, which could hardly germinate in Cr6+ spiked garden soil without either of these bacteria. In fact, large percent of mung seeds failed to sprout in the Cr6+ spiked garden soil and could not grow any further. Apparently, chromate detoxification by marine bacterial isolates and the ability of mung plants to deal with the reduced form appear to work complementarily. This study provides an insight into marine bacterial abilities with respect to chromium and potential applications in promoting growth of leguminous plants-similar to mung in particular-in Cr6+ contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alloway BJ (1990) Heavy metals in Soils. Blackie press, Glasgow

    Google Scholar 

  2. Guthrie BE (1984) Biological and environmental aspects of chromium. Elsevier, Amsterdam

    Google Scholar 

  3. Papp JF, Knoerr AW (1985) Mineral facts and problems: bureau of mines bulletin 675. UNT Digital Library. U.S. Government Printing Office, Washington, DC, pp 139–155. doi:digital.library.unt.edu/ark:/67531/metadc12817/

  4. Sharma S, Adholeya A (2012) Hexavalent chromium reduction in tannery effluent by bacterial species isolated from tannery effluent contaminated soil. IJEST 5:142–154. doi:10.3923/jest.2012.142.154

    CAS  Google Scholar 

  5. Förstner U, Wittman GTW (1979) Metal pollution in the aquatic environment. Springer, New York

    Book  Google Scholar 

  6. Burd GI, Dixon G, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Toxicological profile for chromium (2012) U.S. Department of Health and Human services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR). Atlanta, GA. PMID:24049864

  8. Hawley EL et al (2004) Treatment technologies for chromium(VI). In: Guertin J, Avakian CP, Jacobs JA (eds) Chromium (VI) handbook. CRC Press, Boca Raton, pp 275–300

    Google Scholar 

  9. Armienta-Hernández MA, Rodríguez-Castillo R (1995) Environmental exposure to chromium compounds in the valley of Leon, Mexico. Environ Health Perspect 103:47–51

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv: Azad) root mitochondria. Plant Cell Environ 25:687–693. doi:10.1046/j.1365-3040.2002.00843.x

    Article  CAS  Google Scholar 

  11. Garg SK, Tripathi M, Srinath S (2012) Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol 217:75–140

    CAS  PubMed  Google Scholar 

  12. Khasim DI, Kumar NV, Hussain RC (1989) Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bull Environ Contam Toxicol 43:742–746

    Article  CAS  PubMed  Google Scholar 

  13. Ramasamy K, Banu SP (2007) Bioremediation of metals: microbial processes and techniques. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 173–187

    Chapter  Google Scholar 

  14. Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46. http://www.iioab.org/Vol3%283%292012/3%283%2939-48.pdf

  15. Ahemad M (2014) Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59:321–332. doi:10.1007/s12223-014-0304-8

    Article  CAS  Google Scholar 

  16. Alam MZ, Ahmad S (2012) Toxic chromate reduction by resistant and sensitive bacteria isolated from tannery effluent contaminated soil. Ann Microbiol 62:113–121. doi:10.1007/s13213-011-0235-4

    Article  CAS  Google Scholar 

  17. Cheung KH, Gu JD (2003) Reduction of chromate (CrO 42 ) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  PubMed  Google Scholar 

  18. Cheung KH, Lai HY, Gu JD (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862. hdl.handle.net/10722/73246

  19. Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15. doi:10.1016/j.ibiod.2006.05.002

    Article  CAS  Google Scholar 

  20. De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotech 10:471–477. doi:10.1007/s10126-008-9083-z

    Article  CAS  Google Scholar 

  21. Nagvenkar SN, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in marine bacteria. Ecotoxicology 19:604–613. doi:10.1007/s10646-009-0429-8

    Article  CAS  PubMed  Google Scholar 

  22. APHA (1989) Standard methods for the examination of water and wastewater, 18th edn. APHA, Washington

    Google Scholar 

  23. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1993) Bergy’s manual of determinative bacteriology. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  24. Gerhardt P, Murray RGE, Wood WA, Kreig NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  25. Ausubel FM et al (1988) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  26. Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  Google Scholar 

  27. Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rDNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. doi:10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Felsenstein J (2004) Inferring phytogenies. Sinauer Associates, Sunderland

    Google Scholar 

  33. Pei QH, Shahir S, Raj AAS, Zakaria ZA, Ahmad WA (2009) Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25:1085–1093. doi:10.1007/s11274-009-9989-2

    Article  CAS  Google Scholar 

  34. Faisal M, Hasnain S (2004) Microbial conversion of Cr(VI) into Cr(III) in industrial effluent. Afr J Biotechnol 3:610–617. www.ajol.info/index.php/ajb/article/view/15027/58930

  35. Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I (2006) Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65:644–650. doi:10.1016/j.chemosphere.2006.01.069

    Article  CAS  PubMed  Google Scholar 

  36. Claude KZG, Adolphe Z (2013) Genes related to chromate toxicity challenging systems in native Staphylococci species isolated from a fly ash dumping site. Geomicrobiol J 30:61–71. doi:10.1080/01490451.2011.653085

    Article  CAS  Google Scholar 

  37. Claude KZG, Adolphe Z (2012) Native chromium resistant Staphylococci species from a fly ash dumping site in South Africa harbor plasmid pMOL28 determinants. Agron Afr 24:7–17. www.ajol.info/index.php/aga/article/view/81874

  38. Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395. doi:10.1128/AEM.69.8.4390-4395.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lauro FM, McDougald D, Thomas T et al (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci 106:15527–15533. doi:10.1073/pnas.0903507106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirak RD, Neelam M, Jaya C, Supriya K, Surajit D (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  Google Scholar 

  41. Ilhan S, Nourbakhsh MN, Kiliçarslan S, Ozdag H (2004) Removal of chromium, lead and copper ions from industrial wastewaters by Staphylococcus saprophyticus. Turk Electron J Biol 2:50–57. www.biyotekder.hacettepe.edu.tr/g.pdf

  42. Mishra S, Das AP, Seragadam P (2009) Microbial remediation of hexavalent chromium from chromite contaminated mines of Sukinda valley, Orissa (India). JERAD 3:1122–1172. doi:scholar.google.co.in/scholar?q=Microbial+remediation+of+hexavalent+chromium+from+chromite+contaminated+mines+of+Sukinda+valley,+Orissa&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjEg5umjb3JAhVRCI4KHVLJBMwQgQMIGjAA

  43. Mistry K, Desai C, Lal S, Patel K, Patel B (2010) Hexavalent chromium reduction by Staphylococcus sp. isolated from Cr(VI) contaminated landfill. Int J Biotechnol Biochem 6:117–129. www.ripublication.com/Volume/ijbbv6n1.htm

  44. Pradel P, Hernández C, Tello M, Villarroel MP, Corsini G, Gonzále A (2013) Staphylococcus equorum isolated from seabed as potential biotool to Cr(VI) remediation. Adv Mater Res 825:524–527. doi:10.4028/www.scientific.net/AMR.825.524

    Article  Google Scholar 

  45. Zhang X, Krumholz LR, Yu Z, Chen Y, Liu P, Li X (2013) A novel subspecies of Staphylococcus aureus from sediments of Lanzhou reach of the Yellow river aerobically reduces hexavalent chromium. J Bioremediation Biodegrad 4:188–198. doi:10.4172/2155-6199.1000188

    Article  Google Scholar 

  46. Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microbial Ecol 12:177–202. doi:10.3354/ame012177

    Article  Google Scholar 

  47. Yin J, Stevenson W, Guo Z, Koopman B, Svoronos SA (2016) Effect of protein crude extract on oxic/anoxic diauxic growth of a napdeficient mutant of Paracoccus pantotrophus. J Bioremediation Biodegrad. doi:10.4172/2155-6199.1000367

    Google Scholar 

  48. Egler M, Grosse C, Grass G, Nies D (2005) Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol 187:2297–2307. doi:10.1128/JB.187.7.2297-2307.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De J, Ramaiah N (2007) Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals. Ecol Ind 7:511–520. drs.nio.org/drs/handle/2264/576

  50. Abbasi H, Robab MI, Akhtar A, Sharf R (2012) Chromium toxicity in mung bean, Vigna radiata and bioremediation by Pseudomonas fluorescence. IJPAES 2:99–101. www.ijpaes.com/admin/php/uploads/131_pdf.pdf

  51. Bishoni NR, Dua A, Gupta VK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47:47–57. doi:10.1016/0167-8809(93)90135-C

    Article  Google Scholar 

  52. Jamal SN, Iqbal MZ, Athar M (2006) Effect of aluminum and chromium on the germination and growth of two Vigna species. Int J Environ Sci Technol 3:53–58. doi:10.1007/BF03325907

    Article  CAS  Google Scholar 

  53. Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    Article  CAS  PubMed  Google Scholar 

  54. Dheeba B, Sampathkumar P, Kannan K (2013) Growth, chromium accumulation potential and biochemical changes of Vigna radiata and Zea mays grown with effective microbes. Proc Natl Acad Sci India Sect B Biol Sci 84:381–387. doi:10.1007/s40011-013-0213-7

    Article  Google Scholar 

  55. Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae Strain Cr11. Chemosphere 86:847–852

    Article  CAS  PubMed  Google Scholar 

  56. Burd GI, Dixon G, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  57. Jun R, Ling T, Guanghua Z (2009) Effects of chromium on seed germination, root elongation and coleoptiles growth in six pulses. Int J Environ Sci Technol 6:571–578. doi:10.1007/BF03326097

    Article  CAS  Google Scholar 

  58. Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102. www.scielo.br/pdf/bjpp/v17n1/a08v17n1

  59. Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115. doi:10.1023/A:1017934708402

    Article  CAS  Google Scholar 

  60. Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director, NIO for the facilities and encouragement. Elroy Joe Pereira was provided research fellowship by the University Grant Commission (UGC) (Sanction letter No: 18-12/2011(ii) EU-V); and this study is funded by Project No: PSC0206 (MARBIOTECH). This is NIO’s contribution No. 6081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagappa Ramaiah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 435 kb)

Supplementary material 2 (DOCX 11 kb)

Table 1

The complete list of primers used in this study to target Cr6+ resistance and reduction related genes

Fig. 1

Growth (OD600) of NIOMR 3 in NB with (100 µg mL−1) and without Cr6+

Fig. 2

Growth (OD600) of NIOMR 8 in NB with (100 µg mL−1) and without Cr6+

Fig. 6

Cr6+ reduction by NIOMR 3 and NIOMR 8, respectively at three levels of chromate (20, 50 and 100 µg mL−1 Cr6+). Reduction was monitored for 10 days of growth incubation

Fig. 3

Growth (OD600) responses of NIOMR 3 and NIOMR 8 in Cr6+ supplemented (100 µg mL−1) and Cr6+ free NB at different temperatures (20–42 °C)

Fig. 4

Growth (OD600) responses of NIOMR 3 and NIOMR 8 in Cr6+ supplemented (100 µg mL−1) and Cr6+ free NB at different growth pHs (4–10)

Fig. 5

Cr6+ reduction by NIOMR 3 and NIOMR 8, respectively at three levels of chromate (20, 50 and 100 µg mL−1 Cr6+). Reduction was monitored for 10 days of growth incubation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.J., Fonseca, S., Meena, R.M. et al. Improved Sprouting and Growth of Mung Plants in Chromate Contaminated Soils Treated with Marine Strains of Staphylococcus Species. Indian J Microbiol 57, 400–408 (2017). https://doi.org/10.1007/s12088-017-0668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0668-y

Keywords