Skip to main content
Log in

Intracellular Synthesis of Gold Nanoparticles Using an Ectomycorrhizal Strain EM-1083 of Laccaria fraterna and Its Nanoanti-quorum Sensing Potential Against Pseudomonas aeruginosa

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this research work different shapes and sizes of gold nanoparticles (AuNPs) were synthesized through an intracellular biogenic approach, exploiting the chloroauric acid reducing and Au0 stabilizing potential of Laccaria fraterna EM-1083 mycelia. The intracellularly synthesized AuNPs exhibits anti-quorum sensing inhibitory potential against Pseudomonas aeruginosa. The synthesized AuNPs were characterized using UV–visible spectroscopy; transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The characterization proved that the successful synthesis of highly stable crystalline AuNPs with various shapes. Here we tested inhibitory activity of AuNPs on QS-regulated biofilm development and pyocyanin production traits of P. aeruginosa. The qualitative and quantitative data demonstrated that AuNPs significantly inhibited the biofilm formation and pyocyanin production. In summary, our results signify the future use of intracellularly synthesized AuNPs in P. aeruginosa mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Costerton JW, Stewart PS, Greenberg E (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. doi:10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  2. Behnia M, Logan SC, Fallen L, Catalano P (2014) Nosocomial and ventilator-associated pneumonia in a community hospital intensive care unit: a retrospective review and analysis. BMC Res Notes 7:232. doi:10.1186/1756-0500-7-232

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48. doi:10.1128/AAC.50.1.43-48.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pellegrino FLPC et al (2002) Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil. J Clin Microbiol 40:2420–2424. doi:10.1128/JCM.40.7.2420-2424.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:S43–S48. doi:10.1086/504476

    Article  PubMed  Google Scholar 

  6. Tumbarello M, Repetto E, Trecarichi EM, Bernardini C et al (2011) Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 139:1740–1749. doi:10.1017/S0950268810003055

    Article  CAS  PubMed  Google Scholar 

  7. Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471. doi:10.1111/j.14622920.2005.00769.x

    Article  CAS  PubMed  Google Scholar 

  8. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci 97:3526–3531. doi:10.1073/pnas.97.7.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christiaen SE, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog Dis 70:271–279. doi:10.1111/2049-632X.12124

    Article  CAS  PubMed  Google Scholar 

  10. Chong YM, Yin WF, Ho CY, Mustafa MR, Hadi AHA et al (2011) Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J Nat Prod 74:2261–2264. doi:10.1021/np100872k

    Article  CAS  PubMed  Google Scholar 

  11. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061. doi:10.1093/jac/dkh223

    Article  CAS  PubMed  Google Scholar 

  12. Chen CW, Hsu CY, Lai SM, Syu WJ, Wang TY, Lai PS (2014) Metal nanobullets for multidrug resistant bacteria and biofilms. Adv Drug Deliv Rev 78:88–104. doi:10.1016/j.addr.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  13. Singh BN, Rawat AKS, Khan W, Naqvi AH, Singh BR (2014) Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS ONE 9:e106937. doi:10.1371/journal.pone.0106937

    Article  PubMed  PubMed Central  Google Scholar 

  14. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719. doi:10.1038/srep13719

    Article  PubMed  PubMed Central  Google Scholar 

  15. Paul W, Sharma CP (2011) Blood compatibility studies of Swarna bhasma (gold bhasma), an Ayurvedic drug. Int J Ayurveda Res 2:14–22. doi:10.4103/0974-7788.83183

    PubMed  PubMed Central  Google Scholar 

  16. Sharma R, Prajapati PK (2016) Nanotechnology in medicine: leads from Ayurveda. J Pharm Bioallied Sci 8:80. doi:10.4103/0975-7406.171730

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharma P, Darabdhara G, Reddy TM, Borah A, Bezboruah P et al (2013) Synthesis, characterization and catalytic application of Au NPs-reduced graphene oxide composites material: an eco-friendly approach. Catal Commun 40:139–144. doi:10.1016/j.catcom.2013.06.021

    Article  CAS  Google Scholar 

  18. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PloS one 9:e84693

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gupta A, Moyano DM, Parnsubsakul A, Papadopoulos A, Wang LS, Landis RF, Das R, Rotello VM (2016) Ultrastable and biofunctionalizable gold nanoparticles. ACS Appl Mater Interfaces 8:14096–14101.20. doi:10.1021/acsami.6b02548

    Article  CAS  PubMed  Google Scholar 

  20. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold Nanoparticles for Biology and Medicine. Angew Chem Int Ed 49(19):3280–3294

    Article  CAS  Google Scholar 

  21. Huang X, El Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28. doi:10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  22. Tomić S, Đokić J, Vasilijić S, Ogrinc N, Rudolf R et al (2014) Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE. doi:10.1371/journal.pone.0096584

    PubMed  PubMed Central  Google Scholar 

  23. Ray P, Tiwari R, Reddy UG, Adholeya A (2005) Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro. World J Microbiol Biotechnol 21:309–315. doi:10.1007/s11274-004-3572-7

    Article  CAS  Google Scholar 

  24. Ray P, Reddy UG, Lapeyrie F, Adholeya A (2005) Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro. Int J Phytorem 7:199–216. doi:10.1080/16226510500214673

    Article  CAS  Google Scholar 

  25. Ray P, Adholeya A (2008) Development of molecular markers of ectomycorrhizal fungi based on ITS region. Curr Microbiol 57:23–26. doi:10.1007/s00284-008-9146-4

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53. doi:10.1166/jbn.2005.012

    Article  CAS  Google Scholar 

  27. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7. doi:10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  28. Glauert AM, Lewis PR (2014) Biological specimen preparation for transmission electron microscopy. Princeton University Press, Princeton

    Google Scholar 

  29. Jorgensen J, Turnidge J (2015) Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (eds) Manual of clinical microbiology. ASM Press, Washington, DC, pp 1253–1273. doi:10.1128/9781555817381.ch71

    Chapter  Google Scholar 

  30. O’Toole GA (2011) Microtiter dish biofilm formation assay. JoVE (J Vis Exp) 47:e2437. doi:10.3791/2437

    Google Scholar 

  31. Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588. doi:10.1002/1521-3773(20011001)

    Article  CAS  Google Scholar 

  33. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  34. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. doi:10.1021/jp057170o

    Article  CAS  PubMed  Google Scholar 

  35. Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D (2014) Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces 6:8080–8089. doi:10.1021/am500302t

    Article  CAS  PubMed  Google Scholar 

  36. Tofanello A, Miranda EG, Dias IW, Lanfredi AJ, Arantes JT, Juliano MA, Nantes IL (2016) pH-dependent synthesis of anisotropic gold nanostructures by bioinspired cysteine-containing peptides. ACS Omega 1:424–434. doi:10.1021/acsomega.6b00140

    Article  CAS  Google Scholar 

  37. Plascencia-Villa G, Torrente D, Marucho M, José-Yacamán M (2015) Biodirected synthesis and nanostructural characterization of anisotropic gold nanoparticles. Langmuir 31:3527–3536. doi:10.1021/acs.langmuir.5b00084

    Article  CAS  PubMed  Google Scholar 

  38. Bradley AJ, Jay AH (1932) A method for deducing accurate values of the lattice spacing from X-ray powder photographs taken by the Debye–Scherrer method. Proc Phys Soc 44:563. doi:10.1088/0959-5309/44/5/305

    Article  CAS  Google Scholar 

  39. Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14:1322–1334. doi:10.1039/C2GC16676C

    Article  CAS  Google Scholar 

  40. Borovička J, Dunn CE, Gryndler M, Mihaljevič M et al (2010) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Mokrsko gold deposit, Czech Republic. Soil Biol Biochem 42:83–91. doi:10.1016/j.soilbio.2009.10.003

    Article  Google Scholar 

  41. Sawrnakar MK, Channashettar V, Sarma S, Adholeya A (2009) Ectomycorrhizas: extending the capabilities of chromium-nanoparticles biosynthesis. Mycorrhiza News 21:34–39

    Google Scholar 

  42. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. doi:10.1038/nmat1152

    Article  CAS  PubMed  Google Scholar 

  43. Naik K, Kowshik M (2014) Anti-quorum sensing activity of AgCl–TiO2 nanoparticles with potential use as active food packaging material. J Appl Microbiol 117:972–983. doi:10.1111/jam.12589

    Article  CAS  PubMed  Google Scholar 

  44. Singh BN, Pandey G, Jadaun V, Singh S, Bajpai R, Nayaka S, Naqvi AH, Rawat AKS, Upreti DK, Singh BR (2015) Development and characterization of a novel Swarna-based herbo-metallic colloidal nano-formulation–inhibitor of Streptococcus mutans quorum sensing. RSC Adv 5:5809–5822. doi:10.1039/C4RA11939H

    Article  CAS  Google Scholar 

  45. Singh BN, Singh HB, Singh A, Singh BR et al (2012) Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158:529–538. doi:10.1099/mic.0.052985-0

    Article  CAS  PubMed  Google Scholar 

  46. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacteria drug targets. Crit Rev Microbiol 37:121–140. doi:10.3109/104841X.2010.532479

    Article  CAS  PubMed  Google Scholar 

  47. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the research funding supported by the TERI-Deakin Nanobiotechnology Centre, New Delhi India. We would like to thank Dr. Sunil Kumar Deshmukh for his valuable editorial inputs, throughout the preparation of this research article. Special thanks to Mr. Aditya Gaur, Miss. Priyanka Gupta and Mr. Chandrakant Tripathi for helping in TEM sample preparations, imaging and EDX analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Singh, B.R. & Adholeya, A. Intracellular Synthesis of Gold Nanoparticles Using an Ectomycorrhizal Strain EM-1083 of Laccaria fraterna and Its Nanoanti-quorum Sensing Potential Against Pseudomonas aeruginosa . Indian J Microbiol 57, 448–460 (2017). https://doi.org/10.1007/s12088-017-0662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0662-4

Keywords

Navigation