Skip to main content
Log in

Bio-prospecting Bacterial Diversity of Hot Springs in Northern Himalayan Region of India for Laccases

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial diversity of hot springs of northern Himalayan region of India was studied and explored for laccases, the multicopper enzymes applicable in a large number of industries due to their ability to utilize a wide range of substrates. 220 operational taxonomic units (OTUs) out of 5551 sequence reads for bacterial diversity and 3 OTUs out of 19 sequence reads for Laccase like multicopper oxidases (LMCOs) diversity were generated. Bacteroidetes (74.28%) was the most abundant phylum including genus Paludibacter (66.96%), followed by phylum Proteobacteria (24.53%) including genera Chitinilyticum (7.55%) and Cellvibrio (6.14%). In case of laccase diversity, three LMCO sequences showed affiliation with proteobacteria and one with two domain laccase from uncultivable bacteroidetes. LMCO sequences belonged to H and N families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636. doi:10.1007/s00425-004-1472-6

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Zhang H, Ren D, Li Q, Zhang S, Feng T (2015) Effect of direct-current electric field on enzymatic activity and the concentration of laccase. Indian J Microbiol 55:278–284. doi:10.1007/s12088-015-0523-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muthukumarasamy NP, Murugan S (2014) Production, purification and application of bacterial laccase: a Review. Biotechnology 13:196–205. doi:10.3923/biotech.2014.196.205

    Article  Google Scholar 

  4. Gupta V, Capalash N, Gupta N, Sharma P (2017) Bio-prospecting laccases in the bacterial diversity of activated sludge from pulp and paper industry. Indian J Microbiol 57:75–82. doi:10.1007/s12088-016-0624-2

    Article  CAS  PubMed  Google Scholar 

  5. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:1–23. doi:10.1186/1475-2859-6-9

    Article  Google Scholar 

  6. Bozoglu C, Adiguzel A, Nadaroglu H, Yanmis D, Gulluce M (2013) Purification and characterization of laccase from newly isolated thermophilic Brevibacillus sp. (Z1) and its applications in removal of textile dyes. Res J BioTechnol 8:56–66

    CAS  Google Scholar 

  7. Yamnis D, Adiguzel A, Nadariglu H, Gulluce M, Demir N (2016) Purification and characterization of laccase from thermophilic Anoxybacillus gonensis P39 and its application of removal textile dyes. Rom Biotechnol Lett 21:11485–11496

    Google Scholar 

  8. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9. doi:10.4172/2376-0214.1000127

    Google Scholar 

  9. Floch C, Alarcon-Gutierrez E, Criquet S (2007) ABTS assay of phenol oxidase activity in soil. J Microbiol Methods 71:319–324. doi:10.1016/j.mimet.2007.09.020

    Article  CAS  PubMed  Google Scholar 

  10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  12. Kellner H, Luis P, Zimdars B (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland cambisol soil samples. Soil Biol Biochem 40:638–648. doi:10.1016/j.soilbio.2007.09.013

    Article  CAS  Google Scholar 

  13. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196

    Article  CAS  PubMed  Google Scholar 

  15. Maestre-Reyna M, Liu WC, Jeng WY, Lee CC, Hsu CA, Wen TN, Wang AHJ, Shyur LF (2015) Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS ONE 10(4):e0120601. doi:10.1371/journal.pone.0120601

    Article  PubMed  PubMed Central  Google Scholar 

  16. Satoh T (2013) Prokaryotic communities and biodiversity in the highly acidic hot springs. Ph.D. thesis for Soka University

  17. Tekere M, Lotter A, Olivier J, Jonker N, Venter S (2011) Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa. Afr J Biotechnol 10:18005–18012. doi:10.5897/AJB11.899

    Google Scholar 

  18. Qiu YL, Kuang XZ, Shi XS, Yuan XZ, Guo RB (2014) Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Arch Microbiol 196:149–155. doi:10.1007/s00203-013-0951-1

    Article  CAS  PubMed  Google Scholar 

  19. Chang SC, Chen WM, Wang JT, Wu MC (2007) Chitinilyticum aquatile gen. nov., sp. nov., a chitinolytic bacterium isolated from a freshwater pond used for Pacific white shrimp culture. Int J Syst Evol Microbiol 57:2854–2860. doi:10.1099/ijs.0.65168-0

    Article  CAS  PubMed  Google Scholar 

  20. Spring S, Wagner M, Schumann P, Kampfer P (2005) Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int J Syst Evol Microbiol 55:621–629. doi:10.1099/ijs.0.63356-0

    Article  CAS  PubMed  Google Scholar 

  21. Quillaguaman J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(beta-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157. doi:10.1111/j.1365-2672.2005.02589.x

    Article  CAS  PubMed  Google Scholar 

  22. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed  Google Scholar 

  23. Ray S, Kalia VC (2017) Microbial cometabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 57:39–47. doi:10.1007/s12088-016-0622-4

    Article  CAS  PubMed  Google Scholar 

  24. Khalilova EA, Nuratinov RA, Kotenko SC, Islammagomedova EA (2014) Hydrocarbon-oxidizing microorganisms of hot springs and their significance in the assessment of the biodiversity of microbial communities. Arid Ecosyst 4:25–30. doi:10.1134/S2079096114010028

    Article  Google Scholar 

  25. Cheney C, Holley G, Law R, Smaglik SM (2013) Genomic study of microbes in thermopolis hot springs. Abstract book. University of Wyoming, Laramie, p 17

    Google Scholar 

  26. Volova TG, Boyandin AN, Vasilev AD et al (2011) Biodegradation of polyhydroxyalkanoates (PHAs) in the South China Sea and identification of PHA-degrading bacteria. Microbiology 80:252–260. doi:10.1134/S0026261711020184

    Article  CAS  Google Scholar 

  27. Ausec L, Dirk J, Elsas V, Mandic-mulec I (2011) Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol Biochem 43:975–983. doi:10.1016/j.soilbio.2011.01.013

    Article  CAS  Google Scholar 

  28. Wherland S, Miyazaki K, Pecht I (2016) Intramolecular electron transfer in the bacterial two-domain multicopper oxidase mgLAC. Biochemistry 55:2960–2966. doi:10.1021/acs.biochem.6b00158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

University Grants Commission, New Delhi, is gratefully acknowledged for providing senior research fellowship to V. Gupta. We thank Mr. Janny Tan, Chun Lab, South Korea for providing Next Generation Sequencing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Gupta, N., Capalash, N. et al. Bio-prospecting Bacterial Diversity of Hot Springs in Northern Himalayan Region of India for Laccases. Indian J Microbiol 57, 285–291 (2017). https://doi.org/10.1007/s12088-017-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0656-2

Keywords

Navigation