Skip to main content

Advertisement

Log in

Biomedical Applications of Polyhydroxyalkanoates

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHA) are produced by a large number of microbes under stress conditions such as high carbon (C) availability and limitations of nutrients such as nitrogen, potassium, phosphorus, magnesium, and oxygen. Here, microbes store C as granules of PHAs—energy reservoir. PHAs have properties, which are quite similar to those of synthetic plastics. The unique properties, which make them desirable materials for biomedical applications is their biodegradability, biocompatibility, and non-toxicity. PHAs have been found suitable for various medical applications: biocontrol agents, drug carriers, biodegradable implants, tissue engineering, memory enhancers, and anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

3HB:

3-Hydroxybutyric acid

3HV:

3-Hydroxyvaleric acid

3HO:

3-Hydroxyoctanoate

3HD:

3-Hydroxydecanoic acid

4HB:

4-Hydroxybutyric acid

P(3HB-3HV):

Poly-3hydroxybutyrate-co-3hydroxyvalerate

P(3HB-4HB-3HV):

Poly-3hydroxybutyrate-co-4hydroxybutyrate-co-3hydroxyvalerate

P(3HB-3HV-3HHx):

Poly-3hydroxybutyrate-co-3hydroxyvalerate-co-3hydroxyhexanoate

P(3HB-3HO):

Poly-3hydroxybutyrate-co-3hydroxyoctanoate

P(3HB-3HV-DHB):

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-2,3-dihydroxybutyrate)

3HA:

Hydroxyalkanoic acid

OA:

Octanoic acid

UA:

Undecanoic acid

References

  1. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi:10.1186/1475-2859-8-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed  Google Scholar 

  3. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for the customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249. doi:10.1007/s12088-015-0528-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:1–7. doi:10.1007/s12088-014-0457-9

    Article  Google Scholar 

  6. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  CAS  Google Scholar 

  7. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 105–119. doi:10.1007/978-81-322-2598-0

    Chapter  Google Scholar 

  8. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi:10.1016/j.ijbiomac.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  9. Raut S, Raut S, Sharma M, Srivastav C, Adhikari B, Sen SK (2015) Enhancing degradation of low density polyethylene films by Curvularia lunata SG1 using particle swarm optimization strategy. Indian J Microbiol 55:258–268. doi:10.1007/s12088-015-0522-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Kalia VC (ed) Microbial factories waste treatment. Springer, New Delhi, pp 73–85. doi:10.1007/978-81-322-2598-0_5

    Chapter  Google Scholar 

  11. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  12. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi:10.1007/s12088-016-0595-3

    Article  CAS  PubMed  Google Scholar 

  13. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. doi:10.1007/s12088-016-0583-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ray S, Kalia VC (2016) Microbial cometabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 57:39–47. doi:10.1007/s12088-016-0622-4

    Article  PubMed  CAS  Google Scholar 

  15. Koller M, Marsalek L, de Sousa Dias MM, Braunegg G (2016) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38. doi:10.1016/j.nbt.2016.05.001

    Article  CAS  Google Scholar 

  16. Williams SF, Martin DP (2005) Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. Biopolymers. doi:10.1002/3527600035.bpol4004

    Google Scholar 

  17. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C32:637–647. doi:10.1016/j.msec.2012.01.021

    Article  CAS  Google Scholar 

  18. Babel W, Ackermann JU, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly(3HB). Adv Biochem Eng Biotechnol 71:125–157. doi:10.1007/3-540-40021-4_4

    CAS  PubMed  Google Scholar 

  19. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi:10.1016/j.biomaterials.2005.04.036

    Article  CAS  PubMed  Google Scholar 

  20. Chen GQ, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599. doi:10.1007/s00253-005-1917-2

    Article  CAS  PubMed  Google Scholar 

  21. Shivakumar S, Jagadish SJ, Zatakia H, Dutta J (2011) Purification, characterization and kinetic studies of a novel poly(β)hydroxybutyrate (PHB) depolymerase PhaZ from Penicillium citrinum S2. Appl Biochem Biotechnol 164:1225–1236. doi:10.1007/s12010-011-9208-0

    Article  CAS  PubMed  Google Scholar 

  22. Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265–2270. doi:10.1016/j.biortech.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  23. De Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galan B, Garcia JL, Prieto MA (2010) The turnover of medium-chain-length polyhydroxyalkanoates in KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi:10.1111/j.1462-2920.2009.02061.x

    Article  PubMed  CAS  Google Scholar 

  24. Martinez V, Dinjaski N, De Eugenio LI, De la Pena F, Prieto MA (2014) Cell system engineering to produce extracellular polyhydroxyalkanoate depolymerase with targeted applications. Int J Biol Macromol 71:28–33. doi:10.1016/j.ijbiomac.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  25. O’Connor S, Szwej E, Nikodinovic-Runic J, O’Connor A, Byrne AT, Devocelle M, O’Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M (2013) The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 34:2710–2718. doi:10.1016/j.biomaterials.2012.12.032

    Article  PubMed  CAS  Google Scholar 

  26. Dinjaski N, Fernandez-Gutierrez M, Selvam S, Parra-Ruiz FJ, Lehman SM, San Roman J, Garcia E, Garcia JL, Garcia AJ, Prieto MA (2014) PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials 35:14–24. doi:10.1016/j.biomaterials.2013.09.059

    Article  CAS  PubMed  Google Scholar 

  27. Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG (2016) Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med 27:165. doi:10.1007/s10856-016-5776-4

    Article  PubMed  CAS  Google Scholar 

  28. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144. doi:10.1111/j.1462-2920.2006.01054.x

    Article  CAS  PubMed  Google Scholar 

  29. Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM (2017) Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genom 18:121. doi:10.1186/s12864-017-3487-y

    Article  Google Scholar 

  30. Martinez JL (2017) Effect of antibiotics on bacterial populations: a multi-hierachical selection process. F1000 Res 6:51. doi:10.12688/f1000research.9685.1

    Article  Google Scholar 

  31. Martínez V, de la Peña F, García-Hidalgo J, de la Mata I, García JL, Prieto MA (2012) Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 78:6017–6026. doi:10.1128/AEM.01099-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2009) Short-chain fatty acids and poly-β-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685. doi:10.1016/j.biotechadv.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  33. Ludevese-Pascual G, Laranja JLQ, Amar EC, Sorgeloos P, Bossier P, De Schryver P (2016) Poly-beta-hydroxybutyrate-enriched Artemia sp. for giant tiger prawn Penaeus monodon larviculture. Aquaculture 23:422–429. doi:10.1111/anu.12410

    Google Scholar 

  34. Xiong YC, Yao YC, Zhan XY, Chen GQ (2010) Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci 21:127–140. doi:10.1163/156856209X410283

    Article  CAS  Google Scholar 

  35. Nigmatullin R, Thomas P, Lukasiewicz B, Puthussery H, Roy I (2015) Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90:1209–1221. doi:10.1002/jctb.4685

    Article  CAS  Google Scholar 

  36. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247. doi:10.1002/jctb.1667

    Article  CAS  Google Scholar 

  37. Türesin F, Gursel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed 12:195–207. doi:10.1163/156856201750180924

    Article  PubMed  Google Scholar 

  38. Mokhtarzadeh A (2016) Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin Biol Ther 16:771–785. doi:10.1517/14712598.2016.1169269

    Article  CAS  PubMed  Google Scholar 

  39. Ihssen J, Magnani D, Thony-Meyer L, Ren Q (2009) Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly [(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules. Biomacromol 10:1854–1864. doi:10.1021/bm9002859

    Article  CAS  Google Scholar 

  40. Lee SJ, Park JP, Park TJ, Lee SY, Lee S, Park JK (2005) Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal Chem 77:5755–5759. doi:10.1021/ac0505223

    Article  CAS  PubMed  Google Scholar 

  41. Bäckström BT, Brockelbank JA, Rehm BH (2007) Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 7:3. doi:10.1186/1472-6750-7-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jahns AC, Haverkamp RG, Rehm BH (2008) Multifunctional inorganic-binding beads self-assembled inside engineered bacteria. Bioconjug Chem 19:2072–2080. doi:10.1021/bc8001979

    Article  CAS  PubMed  Google Scholar 

  43. Parlane NA, Wedlock DN, Buddle BM, Rehm BH (2009) Bacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents. App Environ Microbiol 75:7739–7744. doi:10.1128/AEM.01965-09

    Article  CAS  Google Scholar 

  44. Parlane NA, Grage K, Lee JW, Buddle BM, Denis M, Rehm BH (2011) Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 77:8516–8522. doi:10.1128/AEM.06420-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parlane NA, Gupta SK, Rubio-Reyes P, Chen S, Gonzalez-Miro M, Wedlock DN, Rehm BH (2016) Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.6b00355

    Google Scholar 

  46. Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 8:1. doi:10.1186/1475-2859-8-47

    Article  CAS  Google Scholar 

  47. Geng Y, Wang S, Qi Q (2010) Expression of active recombinant human tissue-type plasminogen activator by using in vivo polyhydroxybutyrate granule display. App Environ Microbiol 76:7226–7230. doi:10.1128/AEM.01543-10

    Article  CAS  Google Scholar 

  48. Li J, Shang G, You M, Peng S, Wang Z, Wu H, Chen GQ (2011) Endotoxin removing method based on lipopolysaccharide binding protein and polyhydroxyalkanoate binding protein PhaP. Biomacromol 12:602–608. doi:10.1021/bm101230n

    Article  CAS  Google Scholar 

  49. Hay ID, Du J, Reyes PR, Rehm BH (2015) In vivo polyester immobilized sortase for tagless protein purification. Microb Cell Fact 14:190. doi:10.1186/s12934-015-0385-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Martínez-Donato G, Piniella B, Aguilar D, Olivera S, Pérez A, Castañedo Y, Alvarez-Lajonchere L, Dueñas-Carrera S, Lee JW, Burr N, Gonzalez-Miro M (2016) Protective T cell and antibody immune responses against Hepatitis C virus achieved using a biopolyester-bead-based vaccine delivery system. Clin Vaccine Immunol 23:370–378. doi:10.1128/CVI.00687-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen S, Parlane NA, Lee J, Wedlock DN, Buddle BM, Rehm BH (2014) New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 80:2526–2535. doi:10.1128/AEM.04168-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Parlane NA, Chen S, Jones GJ, Vordermeier HM, Wedlock DN, Rehm BH, Buddle BM (2016) Display of antigens on polyester inclusions lowers the antigen concentration required for a bovine tuberculosis skin test. Clin Vaccine Immunol 23:19–26. doi:10.1128/CVI.00462-15

    Article  CAS  PubMed Central  Google Scholar 

  53. Insomphun C, Chuah JA, Kobayashi S, Fujiki T, Numata K (2016) Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.6b00279

    Google Scholar 

  54. Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173:213–223. doi:10.1006/exnr.2001.7846

    Article  CAS  PubMed  Google Scholar 

  55. Wang YW, Wu Q, Chen J, Chen GQ (2005) Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials 26:899–904. doi:10.1016/j.biomaterials.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. doi:10.1016/j.biomaterials.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  57. Cool SM, Kenny B, Wu A, Nurcombe V, Trau M, Cassady AI, Grondahl L (2007) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res 3:599–610. doi:10.1007/s00253-011-3099-4

    Article  CAS  Google Scholar 

  58. Qu XH, Wu Q, Chen GQ (2006) In vitro study on hemocompatibility and cytocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17:1107–1121. doi:10.1163/156856206778530704

    Article  CAS  Google Scholar 

  59. Qu XH, Wu Q, Liang J, Zou B, Chen GQ (2006) Effect of 3-hydroxyhexanoate content in poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials 27:2944–2950. doi:10.1016/j.biomaterials.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  60. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q (2009) Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225. doi:10.1016/j.biomaterials.2008.09.036

    Article  CAS  PubMed  Google Scholar 

  61. Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406. doi:10.1016/j.biomaterials.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  62. Levine AC, Sparano A, Twigg FF, Numata K, Nomura CT (2015) Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) sccaffolds for tissue engineering. ACS Biomater Sci Eng 1:567–576. doi:10.1021/acsbiomaterials.6b00279

    Article  CAS  Google Scholar 

  63. Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D (2016) Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B. doi:10.1002/jbm.b.33674

    Google Scholar 

  64. Ke Y, Zhang XY, Ramakrishna S, He LM, Wu G (2017) Reactive blends based on polyhydroxyalkanoates: preparation and biomedical application. Mater Sci Eng C Mater Biol Appl 70:1107–1119. doi:10.1016/j.msec.2016.03.114

    Article  CAS  PubMed  Google Scholar 

  65. Sangsanoh P, Israsena N, Suwantong O, Supaphol P (2017) Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line. Polym Bull. doi:10.1007/s00289-017-1947-9

    Google Scholar 

  66. Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomater 8:540–548. doi:10.1016/j.actbio.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  67. Grande D, Ramier J, Versace DL, Renard E, Langlois V (2017) Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. New Biotechnol 37:129–137. doi:10.1016/j.nbt.2016.05.006

    Article  CAS  Google Scholar 

  68. Canadas RF, Cavalheiro JMBT, Guerreiro JDT, de Almeida MCMD, Pollet E, da Silva CL, da Fonseca MMR, Ferreira FC (2014) Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int J Biol Macromol 71:131–140. doi:10.1177/0885328216639749

    Article  CAS  PubMed  Google Scholar 

  69. Su Z, Li P, Wu B, Ma H, Wang Y, Liu G, Wei X (2014) PHBVHHx scaffolds loaded with umbilical cord-derived mesenchymal stem cells or hepatocyte-like cells differentiated from these cells for liver tissue engineering. Mater Sci Eng C 45:374–382. doi:10.1016/j.msec.2014.09.022

    Article  CAS  Google Scholar 

  70. Xu XY, Li XT, Peng SW, Xiao JF, Liu C, Fang G, Chen GQ (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 31:3967–3975. doi:10.1016/j.biomaterials.2010.01.132

    Article  CAS  PubMed  Google Scholar 

  71. Ching KY, Andriotis OG, Li S, Basnett P, Su B, Roy I, Stolz M (2016) Nanofibrous poly (3-hydroxybutyrate)/poly (3-hydroxyoctanoate) scaffolds provide a functional microenvironment for cartilage repair. J Biomater Appl 31:77–91. doi:10.1177/0885328216639749

    Article  CAS  PubMed  Google Scholar 

  72. Stock UA, Wiederschain D, Kilroy SM, Shum-Tim D, Khalil PN, Vacanti JP, Mayer JE, Moses MA (2001) Dynamics of extracellular matrix production and turnover in tissue engineered cardiovascular structures. J Cell Biochem 81:220–228. doi:10.1002/1097-4644

    Article  CAS  PubMed  Google Scholar 

  73. Luklinska ZB, Schluckwerder H (2003) In vivo response to HA-polyhydroxybutyrate/polyhydroxyvalerate composite. J Microsc 211:121–129. doi:10.1046/j.1365-2818.2003.01204.x

    Article  CAS  PubMed  Google Scholar 

  74. Shishatskaya EI, Khlusov IA, Volova TG (2006) A hybrid PHB–hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. J Biomater Sci 17:481–498. doi:10.1163/156856206776986242

    Article  CAS  Google Scholar 

  75. Xi J, Zhang L, Zheng ZA, Chen G, Gong Y, Zhao N, Zhang X (2008) Preparation and evaluation of porous poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)—hydroxyapatite composite scaffolds. J Biomater Appl 22:293–307. doi:10.1177/0885328207075425

    Article  CAS  Google Scholar 

  76. Yucel D, Kose GT, Hasirci V (2010) Polyester based nerve guidance conduit design. Biomaterials 31:1596–1603. doi:10.1016/j.biomaterials.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  77. Lobler M, Sab M, Kunze C, Schmitz KP, Hopt UT (2002) Biomaterial implants induce the inflammation marker CRP at the site of implantation. J Biomed Mater Res A 61:165–167. doi:10.1002/jbm.10155

    Article  CAS  Google Scholar 

  78. Kenar H, Kose GT, Hasirci V (2010) Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med 21:989–997. doi:10.1007/s10856-009-3917-8

    Article  CAS  PubMed  Google Scholar 

  79. Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O (2003) Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J 16:125–133. doi:10.1016/S1369-703X(03)00038-X

    Article  CAS  Google Scholar 

  80. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Dev 3:853–868. doi:10.1586/17434440.3.6.853

    Article  CAS  Google Scholar 

  81. Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157. doi:10.1186/s13018-015-0294-5

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 49:832–864. doi:10.1002/polb.22259

    Article  CAS  Google Scholar 

  83. Yagmurlu MF, Korkusuz F, Gursel I, Korkusuz P, Ors U, Hasirci V (1999) Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res A 46:494–503

    Article  CAS  Google Scholar 

  84. Gursel I, Korkusuz F, Turesin F, Alaeddinoglu NG, Hasırci V (2000) In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22:73–80. doi:10.1016/S0142-9612(00)00170-8

    Article  Google Scholar 

  85. Gursel I, Yagmurlu F, Korkusuz F, Hasirci V (2002) In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencap 19:153–164. doi:10.1080/02652040110065413

    Article  CAS  Google Scholar 

  86. Korkusuz F, Korkusuz P, Eksioglu F, Gursel İ, Hasırcı V (2001) In vivo response to biodegradable controlled antibiotic release systems. J Biomed Mater Res 55:217–228. doi:10.1002/(SICI)1097-4636

    Article  CAS  PubMed  Google Scholar 

  87. Basnett P, Ching KY, Stolz M, Knowles JC, Boccaccini AR, Smith C, Locke IC, Keshavarz TK, Roy I (2013) Novel poly(3-hydroxyoctanoate)/poly(3-hydroxybutyrate) blends for medical applications. React Funct Polym 73:1340–1348. doi:10.1016/j.reactfunctpolym.2013.03.019

    Article  CAS  Google Scholar 

  88. Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15:13849–13880. doi:10.3390/ijms150813849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kehail AA, Brigham CJ (2017) Anti-biofilm activity of solvent-cast and electrospun polyhydroxyalkanoate membranes treated with lysozyme. J Polym Environ. doi:10.1007/s10924-016-0921-1

    Google Scholar 

  90. Raoga O, Sima L, Chirioiu M, Popescu-Pelin G, Fufă O, Grumezescu O, Socol M, Stănculescu A, Zgură I, Socol G (2017) Biocomposite coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium phosphates obtained by MAPLE for bone tissue engineering. Appl Surf Sci. doi:10.1016/j.apsusc.2017.01.205

    Google Scholar 

  91. Rodríguez-Contreras A, García Y, Manero JM, Rupérez E (2017) Antibacterial PHAs coating for titanium implants. Eur Polym J. doi:10.1016/j.eurpolymj.2017.03.004

    Google Scholar 

  92. Hazer DB, Hazer B, Kaymaz F (2009) Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies. Biomed Mater 4:035011. doi:10.1088/1748-6041/4/3/035011

    Article  PubMed  CAS  Google Scholar 

  93. Hazer DB, Hazer B (2011) The effect of gold clusters on the autoxidation of poly(3-hydroxy 10-undecenoate-co-3-hydroxy octanoate) and tissue response evaluation. J Polym Res 18:251–262. doi:10.1007/s10965-010-9413-5

    Article  CAS  Google Scholar 

  94. Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23:3369–3376. doi:10.1016/S0142-9612(02)00037-6

    Article  CAS  PubMed  Google Scholar 

  95. Tokiwa Y, Calabia BP (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15:259–267. doi:10.1007/s10924-007-0066-3

    Article  CAS  Google Scholar 

  96. Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444. doi:10.1073/pnas.97.10.5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:34–41. doi:10.1111/j.1574-6968.2007.00904.x

    Article  CAS  PubMed  Google Scholar 

  98. Chen GQ (2011) Biofunctionalization of polymers and their applications. In: Biofunctionalization of polymers and their applications. Springer, Berlin, pp 29–45. doi: 10.1007/10_2010_89

  99. Zhang J, Qian C, Shaowu L, Xiaoyun L, Yongxi Z, Ji-Song G, Jin-Chun C, Qiong W, Guo-Qiang C (2013) 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomater 34:7552–7562. doi:10.1016/j.biomaterials.2013.06.043

    Article  CAS  Google Scholar 

  100. Camberos-Luna L, Gerónimo-Olvera C, Montiel T, Rincon-Heredia R, Massieu L (2016) The ketone body, β-Hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609. doi:10.1007/s11064-015-1700-4

    Article  CAS  PubMed  Google Scholar 

  101. Cheng S, Chen GQ, Leski M, Zou B, Wang Y, Wu Q (2006) The effect of d,l-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27:3758–3765. doi:10.1016/j.biomaterials.2006.02.046

    Article  CAS  PubMed  Google Scholar 

  102. Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616. doi:10.1016/j.biomaterials.2007.04.046

    Article  CAS  PubMed  Google Scholar 

  103. Zou XH, Li HM, Wang S, Leski M, Yao YC, Yang XD, Huang QJ, Chen GQ (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541. doi:10.1016/j.biomaterials.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  104. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenerg 74:268–279. doi:10.1016/j.biombioe.2014.12.017

    Article  CAS  Google Scholar 

  105. Gao X, Chen JC, Wu Q, Chen GQ (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22:768–774. doi:10.1128/AEM.01184-06

    Article  CAS  PubMed  Google Scholar 

  106. Foster LJR, Saufi A, Holden PJ (2001) Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution. Biotechnol Lett 23:893–898. doi:10.1023/A:1010528229685

    Article  CAS  Google Scholar 

  107. Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Bioresour Technol 224:743–747. doi:10.1016/j.biortech.2016.11.089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), CSIR-HRD project OLP1126 (ES Scheme No. 21(1022)/16/EMR-2), Delhi, India, for providing the necessary funds, facilities and moral support. Authors are also thankful to Academy of Scientific & Innovative Research (AcSIR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Chandra Kalia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., Kalia, V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J Microbiol 57, 261–269 (2017). https://doi.org/10.1007/s12088-017-0651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0651-7

Keywords

Navigation