In Vitro Characterization of Lactobacillus plantarum Strains with Inhibitory Activity on Enteropathogens for Use as Potential Animal Probiotics


The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Garmendia J, Frankel G, Crepin VF (2005) Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73:2573–2585. doi:10.1128/IAI.73.5.2573-2585.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Coburn B, Grassl GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118. doi:10.1038/sj.icb.7100007

    Article  PubMed  Google Scholar 

  3. 3.

    Naqid IA, Owen JP, Maddison BC, Gardner DS, Foster N, Tchórzewska MA, La Ragione RM, Gough KC (2015) Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Anim Feed Sci Technol 201:57–65. doi:10.1016/j.anifeedsci.2014.12.005

    CAS  Article  Google Scholar 

  4. 4.

    Van Immerseel F, Studholme DJ, Eeckhaut V, Heyndrickx M, Dewulf J, Dewaele I, Van Hoorebeke S, Haesebrouck F, Van Meirhaeghe H, Ducatelle R, Paszkiewicz K, Titball RW (2013) Salmonella Gallinarum field isolates from laying hens are related to the vaccine strain SG9R. Vaccine 31:4940–4945. doi:10.1016/j.vaccine.2013.08.033

    Article  PubMed  Google Scholar 

  5. 5.

    Kwon YK, Kim A, Kang MS, Her M, Jung BY, Lee KM, Jeong W, An BK, Kwon JH (2010) Prevalence and characterization of Salmonella Gallinarum in the chicken in Korea during 2000 to 2008. Poult Sci 89:236–242. doi:10.3382/ps.2009-00420

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Steinmuller N, Demma L, Bender JB, Eidson M, Angulo FJ (2006) Outbreaks of enteric disease associated with animal contact: not just a foodborne problem anymore. Clin Infect Dis 43:1596–1602

    Article  PubMed  Google Scholar 

  7. 7.

    Osei Sekyere J (2014) Antibiotic types and handling practices in disease management among pig farms in Ashanti region, Ghana. J Vet Med 2014:531952. doi:10.1155/2014/531952

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM (2012) Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int 45:628–633. doi:10.1016/j.foodres.2011.03.047

    Article  Google Scholar 

  9. 9.

    FAO/WHO (2001) Expert consultation on health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization [online]. Accessed 01 June 2016

  10. 10.

    Bomba A, Kravjansk I, Kagtel R, Herich R, Juhasova Z, Cizek M, Kapitancik B (1996) Inhibitory effects of Lactobacillus casei upon the adhesion of enterotoxigenic Escherichia coli K99 to the intestinal mucosa in gnotobiotic lambs. Small Rumin Res 23:199–206

    Article  Google Scholar 

  11. 11.

    Collado MC, Grzeskowiak L, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55:260–265. doi:10.1007/s00284-007-0144-8

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Slizewska K, Piotrowska M (2014) Reduction of ochratoxin A in chicken feed using probiotic. Ann Agric Environ Med 21:676–680. doi:10.5604/12321966.1129913

    Article  PubMed  Google Scholar 

  13. 13.

    Zimmermann JA, Rossler E, Blajman JE, Romero-Scharpen A, Astesana DM, Olivero CR, Berisvil AP, Signorini ML, Zbrun MV, Frizzo LS, Soto LP (2016) Effects of probiotics in swines growth performance: a meta-analysis of randomised controlled trials. Anim Feed Sci Technol 219:280–293

    CAS  Article  Google Scholar 

  14. 14.

    Blajman JE, Frizzo LS, Zbrun MV, Astesana DM, Fusari ML, Soto LP, Rosmini MR, Signorini ML (2014) Probiotics and broiler growth performance: a meta-analysis of randomised controlled trials. Br Poult Sci 55:483–494. doi:10.1080/00071668.2014.931930

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 63:81–90

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521nprot.2007.521

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Damodharan K, Lee YS, Palaniyandi SA, Yang SH, Suh JW (2015) Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol 6:768. doi:10.3389/fmicb.2015.00768

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Vancanneyt M, De Vos P, Cleenwerck I (2008) Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125:79–90. doi:10.1016/j.ijfoodmicro.2007.02.030

    Article  PubMed  Google Scholar 

  21. 21.

    Bove P, Gallone A, Russo P, Capozzi V, Albenzio M, Spano G, Fiocco D (2012) Probiotic features of Lactobacillus plantarum mutant strains. Appl Microbiol Biotechnol 96:431–441. doi:10.1007/s00253-012-4031-2

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Marteau P, Minekus M, Havenaar R, Huis in’t Veild JH (1997) Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Diary Sci 80:1031–1037

    CAS  Article  Google Scholar 

  23. 23.

    Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W (2013) Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci 96:4252–4257. doi:10.3168/jds.2013-6547

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    EFSA (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. doi:10.2903/j.efsa.2012.2740

    Google Scholar 

  25. 25.

    Wang DS, Zhang RY, Zhu WY, Mao SY (2013) Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livest Sci 155:262–272. doi:10.1016/j.livsci.2013.05.026

    Article  Google Scholar 

  26. 26.

    Canibe N, Virtanen E, Jensen BB (2007) Effect of acid addition to pig liquid feed on its microbial and nutritional characteristics. Livest Sci 108:202–205. doi:10.1016/j.livsci.2007.01.094

    Article  Google Scholar 

  27. 27.

    Kiarie E, Slominski BA, Nyachoti CM (2009) Tissue fatty acid profiles, plasma biochemical characteristics and cecal biogenic amines in piglets fed diets containing flaxseed and carbohydrase enzymes. Livest Sci 121:1–6. doi:10.1016/j.livsci.2008.05.009

    Article  Google Scholar 

  28. 28.

    Roberton AM, Corfield AP (1999) Mucin degradation and its significance in inflammatory conditions of the gastrointestinal tract. In: Tannock GW (ed) Medical importance of the normal microflora. Springer, Dordrecht, pp 222–261. doi:10.1007/978-1-4757-3021-0

    Google Scholar 

  29. 29.

    Colina A-R, Aumont F, Deslauriers N, Belhumeur P, Repentigny LD (1996) Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 64:4514–4519

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pringsulaka O, Rueangyotchanthana K, Suwannasai N, Watanapokasin R, Amnueysit P, Sunthornthummas S, Sukkhum S, Sarawaneeyaruk S, Rangsiruji A (2015) In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest Sci 174:66–73. doi:10.1016/j.livsci.2015.01.016

    Article  Google Scholar 

  31. 31.

    Šušković J, Kos B, Beganović J, Pavunc AL, Habjanič K, Matošić S (2010) Antimicrobial activity—the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 48:296–307

    Google Scholar 

  32. 32.

    Raftari M, Jalilian FA, Abdulamir AS, Son R, Sekawi Z, Fatimah AB (2009) Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiol J 3:121–127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hussain G, Rahman A, Hussain T, Uddin S, Ali T (2015) Citric and lactic acid effects on the growth inhibition of E. coli and S. typhymurium on beef during storage. Sarhad J Agric 31:183–190. doi:10.17582/journal.sja/2015/

    Article  Google Scholar 

  34. 34.

    Ross RP, Desmond C, Fitzgerald GF, Stanton C (2005) Overcoming the technological hurdles in the development of probiotic foods. J Appl Microbiol 98:1410–1417. doi:10.1111/j.1365-2672.2005.02654.x

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cai Y, Ohmomo S, Ogawa M, Kumai S (1997) Effect of NaCl-tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage. J Appl Microbiol 83:307–313

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnol Prog 20:248–254

    CAS  Article  PubMed  Google Scholar 

Download references


This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01133402)” Rural Development Administration, Republic of Korea.

Author information



Corresponding authors

Correspondence to Joo-Won Suh or Seung Hwan Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palaniyandi, S.A., Damodharan, K., Suh, JW. et al. In Vitro Characterization of Lactobacillus plantarum Strains with Inhibitory Activity on Enteropathogens for Use as Potential Animal Probiotics. Indian J Microbiol 57, 201–210 (2017).

Download citation


  • Lactobacillus plantarum
  • Antimicrobial
  • Enteric pathogens
  • NaCl tolerance
  • Probiotic