Abstract
Comparative metagenomics approach has been used in this study to discriminate colonization of methanogenic population in different breeds of cattle. We compared two Indian cattle breeds (Gir and Kankrej) and two exotic cattle (Holstein and Jersey) breeds. Using a defined dietary plan for selected Indian varieties, the diet dependent shifts in microbial community and abundance of the enzymes associated with methanogenesis were studied. This data has been compared with the available rumen metagenome data from Holstein and Jersey dairy cattle. The abundance of genes for methanogenesis in Holstein and Jersey cattle came from Methanobacteriales order whereas, majority of the enzymes for methanogenesis in Gir and Kankrej cattle came from Methanomicrobiales order. The study suggested that by using slow/less digestible feed, the propionate levels could be controlled in rumen; and in turn, this would also help in further reducing the hydrogenotrophic production of methane. The study proposes that with the designed diet plan the overall methanogenic microbial pool or the individual methanogens could be targeted for development of methane mitigation strategies.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, Rufino MC (2013) The roles of livestock in developing countries. Animal 7:3–18. doi:10.1017/S1751731112001954
Scheehle EA, Kruger D (2006) Global anthropogenic methane and nitrous oxide emissions. Energy J 3:33–44
Chhabra A, Manjunath KR, Panigrahy S (2007) Assessing the role of Indian livestock in climate change. Int Arch Photogramm Remote Sens Spat Inform Sci XXXVIII Part 8:W3
Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625. doi:10.1128/AEM.02812-07
Ross EM, Moate PJ, Marett LC, Cocks BG, Hayes BJ (2013) Metagenomic predictions: from microbiome to complex health and environmental phenotypes in humans and cattle. PLoS ONE 8:e73056. doi:10.1371/journal.pone.0073056
Patel V, Patel AK, Parmar NR, Patel AB, Reddy B, Joshi CG (2014) Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol 98:9749–9761. doi:10.1007/s00253-014-6153-1
Parmar NR, Solanki JV, Patel AB, Shah TM, Patel AK, Parnerkar S, Kumar J, Joshi CG (2014) Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification. J Mol Microbiol Biotechnol 24:249–261. doi:10.1159/000365054
Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7:e33865. doi:10.1371/journal.pone.0033865
Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010:prot5368. doi:10.1101/pdb.prot5368
Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):4–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Gen Res 13:2498–2504. doi:10.1101/gr.1239303
Kanehisa M (2002) The KEGG database. In: Bock G, Goode JA (eds) ‘In Silico’ simulation of biological processes: novartis foundation symposium, vol 247. Wiley, Chichester. doi:10.1002/0470857897.ch8
Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2:3. doi:10.1186/2042-5783-2-3
Westermann P, Ahring BK, Mah RA (1989) Acetate production by methanogenic bacteria. Appl Environ Microbiol 55:2257–2261
Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63. doi:10.1111/j.1574-6941.2010.01029.x
Bergman E (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590
Rahman MM, Salleh MA, Sultana N, Kim MJ, Ra CS (2013) Estimation of total volatile fatty acid (VFA) from total organic carbons (TOCs) assessment through in vitro fermentation of livestock feeds. Afr J Microbiol Res 7:1378–1384. doi:10.5897/AJMR12.1694
Bell MJ, Eckard RJ (2012) Reducing enteric methane losses from ruminant livestock—its measurement, prediction and the influence of diet. In: Khalid J (ed) Livestock production. InTech, Trichy. doi:10.5772/50394
Jami E, White BA, Mizrahi I (2014) Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE 9:e85423. doi:10.1371/journal.pone.0085423
Hegarty RS, Nolan JV (2007) Estimation of ruminal methane production from measurement of volatile fatty acid production. In: Makkar HPS, Vercoe PE (eds) Measuring methane production from ruminants. Springer, Dordrecht, pp 69–92. doi:10.1007/978-1-4020-6133-2_4
Hawkes F, Dinsdale R, Hawkes D, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347. doi:10.1016/S0360-3199(02)00090-3
Carberry CA, Waters SM, Kenny DA, Creevey CJ (2014) Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol 80:586–594. doi:10.1128/AEM.03131-13
Balch WE, Fox G, Magrum L, Woese C, Wolfe R (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260
Hook SE, Wright A-DG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. Archaea. doi:10.1155/2010/945785
Singh KM, Pandya PR, Parnerkar S, Tripathi AK, Rank DN, Kothari RK, Joshi CG (2011) Molecular identification of methanogenic archaea from surti buffaloes (Bubalus bubalis), reveals more hydrogenotrophic methanogens phylotypes. Braz J Microbiol 42:132–139. doi:10.1590/s1517-83822011000100017
Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10:313–319. doi:10.1016/j.anaerobe.2004.08.002
Danielsson R, Schnürer A, Arthurson V, Bertilsson J (2012) Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl Environ Microbiol 78:6172–6179. doi:10.1128/aem.00675-12
Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5. doi:10.1186/1471-2180-1-5
Schnürer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740. doi:10.2166/wst.2008.097
Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol 78:7619–7625. doi:10.1128/aem.01637-12
Acknowledgements
Authors are thankful to Indian Council of Agricultural Research (ICAR) for providing the fund and also to the field veterinarians of Sardar Krushinagar Dantiwada Agricultural University and Anand Agricultural University (India) for their co-operation in this study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Parmar, N.R., Pandit, P.D., Purohit, H.J. et al. Influence of Diet Composition on Cattle Rumen Methanogenesis: A Comparative Metagenomic Analysis in Indian and Exotic Cattle. Indian J Microbiol 57, 226–234 (2017). https://doi.org/10.1007/s12088-016-0635-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12088-016-0635-z


