Skip to main content

Advertisement

Log in

Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC–MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186. doi:10.1128/AEM.01034-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168:311–332. doi:10.1016/j.micres.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580. doi:10.1016/j.micres.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  4. Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, Chan KG (2014) Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits methicillin-resistant Staphylococcus aureus. Int J Syst Evol Microbiol 64:3297–3306. doi:10.1099/ijs.0.065045-0

    Article  CAS  PubMed  Google Scholar 

  5. Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH (2015) Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front Microbiol 6:1398. doi:10.3389/fmicb.2015.01398

    PubMed  PubMed Central  Google Scholar 

  6. Tan LTH, Ser HL, Yin WF, Chan KG, Lee LH, Goh BH (2015) Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front Microbiol 6:1316. doi:10.3389/fmicb.2015.01316

    PubMed  PubMed Central  Google Scholar 

  7. Ser HL, Law JWF, Chaiyakunapruk N, Jacob SA, Palanisamy UD, Chan KG, Goh BH, Lee LH (2016) Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Front Microbiol 7:522. doi:10.3389/fmicb.2016.00522

    PubMed  PubMed Central  Google Scholar 

  8. Tan LTH, Chan KG, Lee LH, Goh BH (2016) Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 7:79. doi:10.3389/fmicb.2016.00079

    PubMed  PubMed Central  Google Scholar 

  9. Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26. doi:10.1038/ja.2005.1

    Article  CAS  Google Scholar 

  10. Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP, Yu HP, Li J, Yao XS, Goodfellow M, Ruan JS (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44. doi:10.3390/md7010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, Ab. Mutalib NS, Chan KG (2014a) Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci World J 2014: Article ID: 698178

  12. Hamedi J, Imanparast S, Mohammadipanah F (2015) Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iran J Microbiol 7:23–30

    PubMed  PubMed Central  Google Scholar 

  13. Neha S, Sandeep S (2014) Microbial secondary metabolites as potential anti-infective agents. Int J Pharm Sci Rev Res 2:767–773

    Google Scholar 

  14. Azman AS, Othman I, Velu SS, Chan KG, Lee LH (2015) Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 6:856. doi:10.3389/fmicb.2015.00856

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132. doi:10.3109/07388551.2011.562482

    Article  CAS  PubMed  Google Scholar 

  16. Goodfellow M (2010) Selective isolation of Actinobacteria. In: Baltz RH, Davies J, Demain AL (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, pp 13–27

    Google Scholar 

  17. Xu DB, Ye WW, Han Y, Deng ZX, Hong K (2014) Natural products from mangrove actinomycetes. Mar Drugs 12:2590–2613. doi:10.3390/md12052590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee LH, Azman AS, Zainal N, Eng SK, Ab Mutalib NS, Yin WF, Chan KG (2014) Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 64:3513–3519. doi:10.1099/ijs.0.062414-0

    Article  CAS  PubMed  Google Scholar 

  19. Lee LH, Azman AS, Zainal N, Yin WF, Mutalib NS, Chan KG (2015) Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 65:996–1002. doi:10.1099/ijs.0.000053

    Article  CAS  PubMed  Google Scholar 

  20. Azman AS, Zainal N, Ab Mutalib NS, Yin WF, Chan KG, Lee LH (2015) Monashia flava gen. nov., sp. nov., a novel actinobacterium of the family Intrasporangiaceae. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.000753

    Google Scholar 

  21. Mangamuri UK, Vijayalakshmi M, Poda S, Manavathi B, Bhujangarao C, Venkateswarlu Y (2015) Bioactive metabolites produced by Pseudonocardia endophytica VUK-10 from mangrove sediments: isolation, chemical structure determination and bioactivity. J Microbiol Biotechnol 25:629–636

    Article  CAS  PubMed  Google Scholar 

  22. Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G (2014) Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int 55:1897–1901

    Google Scholar 

  23. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. J Org Chem 70:6196–6203. doi:10.1021/jo050511+

    Article  CAS  PubMed  Google Scholar 

  24. Lee LH, Cheah YK, Sidik SM, Ab Mutalib NS, Tang YL, Lin HP, Hong K (2012) Molecular characterization of Antarctic actinobacteria and screening for antibacterial metabolite production. World J Microbiol Biotechnol 28:2125–2137

    Article  CAS  PubMed  Google Scholar 

  25. Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH (2016) Streptomyces malaysiense sp. nov.: a novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci Rep 6:24247. doi:10.1038/srep24247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  27. Supriady H, Kamarudin MNA, Chan CK, Goh BH, Kadir HA (2015) SMEAF attenuates the production of pro-inflammatory mediators through the inactivation of Akt-dependent NF-κB, p38 and ERK1/2 pathways in LPS-stimulated BV-2 microglial cells. J Funct Foods 17:434–448. doi:10.1016/j.jff.2015.05.042

    Article  CAS  Google Scholar 

  28. Ser HL, Zainal N, Palanisamy UD, Goh BH, Chan KG, Lee LH (2015) Streptomyces gilvigriseus sp. nov., a novel actinobaterium isolated from mangrove forest soil. Antonie Van Leeuwenhoek 107:1369–1378. doi:10.1007/s10482-015-0431-5

    Article  CAS  PubMed  Google Scholar 

  29. Ocampo PS, Lazar V, Papp B, Arnoldini M, Wiesch PA, Busa-Fekete R, Fekete G, Pal C, Ackermann M, Bonhoeffer S (2014) Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 58:4573–4582. doi:10.1128/aac.02463-14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 38:864–870. doi:10.1086/381972

    Article  CAS  PubMed  Google Scholar 

  31. Wu D, Yotnda P (2011) Induction and testing of hypoxia in cell culture. J Vis Exp 54:2899. doi:10.3791/2899

    Google Scholar 

  32. Zhang Y-B, Wang X, Meister EA, Gong K-R, Yan S-C, Lu G-W, Ji X-M, Shao G (2014) The effects of CoCl(2) on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int J Mol Sci 15:10999–11012. doi:10.3390/ijms150610999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grasselli F, Basini G, Bussolati S, Bianco F (2005) Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev 17:715–720

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Gao D (2013) Overexpression of cytoglobin gene inhibits hypoxic injury to SH-SY5Y neuroblastoma cells. Neural Regen Res 8:2198–2203. doi:10.3969/j.issn.1673-5374.2013.23.010

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee SG, Lee H, Rho HM (2001) Transcriptional repression of the human p53 gene by cobalt chloride mimicking hypoxia. FEBS Lett 507:259–263

    Article  CAS  PubMed  Google Scholar 

  36. Vengellur A, LaPres JJ (2004) The role of hypoxia inducible factor 1alpha in cobalt chloride induced cell death in mouse embryonic fibroblasts. Toxicol Sci 82:638–646. doi:10.1093/toxsci/kfh278

    Article  CAS  PubMed  Google Scholar 

  37. Chow JM, Shen SC, Huan SK, Lin HY, Chen YC (2005) Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol 69:1839–1851. doi:10.1016/j.bcp.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  38. Shivapriya S, Ilango K, Agrawal A, Dubey GP (2014) Effect of Hippophae rhamnoides on cognitive enhancement via neurochemical modulation in scopolamine induced Sprague Dawley rats. Int J Pharm Sci Res 5:4153–4158

    Google Scholar 

  39. Triana-Vidal LE, Carvajal-Varona SM (2013) Protective effect of galantamine against oxidative damage using human lymphocytes: a novel in vitro model. Arch Med Res 44:85–92. doi:10.1016/j.arcmed.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  40. Facecchia K, Fochesato LA, Ray SD, Stohs SJ, Pandey S (2011) Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. J Toxicol 2011:683728. doi:10.1155/2011/683728

    Article  PubMed  PubMed Central  Google Scholar 

  41. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. doi:10.1152/physrev.00031.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T (2013) Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells. Neural Regen Res 8:485–495. doi:10.3969/j.issn.1673-5374.2013.06.001

    PubMed  PubMed Central  Google Scholar 

  43. Kuljis RO (2010) Integrative understanding of emergent brain properties, quantum brain hypotheses, and connectome alterations in dementia are key challenges to conquer Alzheimer’s disease. Front Neurol 1:15. doi:10.3389/fneur.2010.00015

    PubMed  PubMed Central  Google Scholar 

  44. Salkovic-Petrisic M (2008) Amyloid cascade hypothesis: is it true for sporadic Alzheimer’s disease. Period Biol 110:17–25

    CAS  Google Scholar 

  45. Wang P, Jiang S, Cui Y, Yue Z, Su C, Sun J, Sheng S, Tian J (2011) The n-terminal 5-MER peptide analogue P165 of amyloid precursor protein exerts protective effects on SH-SY5Y cells and rat hippocampus neuronal synapses. Neuroscience 173:169–178. doi:10.1016/j.neuroscience.2010.10.069

    Article  CAS  PubMed  Google Scholar 

  46. Saxena G, Singh SP, Agrawal R, Nath C (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol 581:283–289. doi:10.1016/j.ejphar.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  47. Stuchbury G, Munch G (2005) Alzheimer’s associated inflammation, potential drug targets and future therapies. J Neural Transm 112:429–453. doi:10.1007/s00702-004-0188-x

    Article  CAS  PubMed  Google Scholar 

  48. Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90. doi:10.1111/j.1750-3639.2007.00053.x

    Article  CAS  PubMed  Google Scholar 

  49. Samy DM, Ismail CA, Nassra RA, Zeitoun TM, Nomair AM (2016) Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: erythropoietin versus curcumin. Eur J Pharmacol 770:52–60. doi:10.1016/j.ejphar.2015.11.046

    Article  CAS  PubMed  Google Scholar 

  50. Karanja E, Boga H, Muigai A, Wamunyokoli F, Kinyua J, Nonoh J (2010) Growth characteristics and production of secondary metabolites from selected novel Streptomyces species isolated from selected Kenyan national parks. Sci Conf Proc, pp 51–80. http://journals.jkuat.ac.ke/index.php/jscp/article/view/672

  51. Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788. doi:10.1099/mic.0.074146-0

    Article  CAS  PubMed  Google Scholar 

  52. Pereira D, Valentão P, Pereira J, Andrade P (2009) Phenolics: from chemistry to biology. Molecules 14:2202–2211. doi:10.3390/molecules14062202

    Article  CAS  Google Scholar 

  53. Han XZ, Shen T, Lou HX (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988. doi:10.3390/i8090950

    Article  CAS  PubMed Central  Google Scholar 

  54. Baidez AG, Gomez P, Del Rio JA, Ortuno A (2007) Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb: role of phenolic compounds in plant defense mechanism. J Agric Food Chem 55:3373–3377. doi:10.1021/jf063166

    Article  CAS  PubMed  Google Scholar 

  55. Veeriah S, Kautenburger T, Habermann N, Sauer J, Dietrich H, Will F, Pool-Zobel BL (2006) Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinogen 45:164–174. doi:10.1002/mc.20158

    Article  CAS  Google Scholar 

  56. Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36:1235–1247. doi:10.1016/S0959-8049(00)00103-9

    Article  CAS  PubMed  Google Scholar 

  57. Lenartowicz P, Kafarski P, Lipok J (2015) The overporoduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus. Biodegradation 26:65–76. doi:10.1007/s10532-014-9716-z

    Article  CAS  PubMed  Google Scholar 

  58. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM (2015) 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol 11:44–50. doi:10.1016/j.ijfoodmicro.2015.06.025

    Article  Google Scholar 

  59. Dharni S, Sanchita Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-Di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62:6138–6146. doi:10.1021/jf5001138

    Article  CAS  PubMed  Google Scholar 

  60. Yogeswari S, Ramalakshmi S, Neelavathy R, Muthumary J (2012) Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Glob J Pharmacol 6:65–71

    Google Scholar 

  61. Premkumar T, Govindarajan S (2005) Antimicrobial study of pyrazine, pyrazole and imidazole carboxylic acids and their hydrazinium salts. World J Microbiol Biotech 21:479–480. doi:10.1007/s11274-004-2041-7

    Article  CAS  Google Scholar 

  62. Jia J, Zhang X, Hu YS, Wu Y, Wang QZ, Li NN, Wu CQ, Yu HX, Guo QC (2009) Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism. Thromb Res 123:727–730. doi:10.1016/j.thromres.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  63. Baldwin MV, Arikkatt SD, Sindhu TJ, Chanran M, Bhat AR, Krishnakumar K (2013) A review of biological potential of pyrazine and related heterocyclic compounds. World J Pharm Pharmaceut Sci 3:1124–1132

    Google Scholar 

  64. Ser HL, Tan LTH, Palanisamy UD, Abd Malek SN, Yin WF, Chan KG, Goh BH, Lee LH (2016) Streptomyces antioxidans sp. nov., a novel mangrove soil actinobacterium with antioxidative and neuroprotective potentials. Front Microbiol 7:899. doi:10.3389/fmicb.2016.00899

    PubMed  PubMed Central  Google Scholar 

  65. Wang DH, Tao WY (2009) Antitumor activity in vitro and volatile components of metabolites from myxobacteria Stigmatella WXNXJ-B. Afr J Microbiol Res 3:755–760

    CAS  Google Scholar 

  66. Ser HL, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH (2015) Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front Microbiol 6:1398. doi:10.3389/fmicb.2015.01398

    PubMed  PubMed Central  Google Scholar 

  67. Sharma P, Kalita MC, Thakur D (2016) Broad spectrum antimicrobial activity of forest-derived soil Actinomycete, Nocardia sp. PB-52. Front Microbiol 7:347. doi:10.3389/fmicb.2016.00347

    PubMed  PubMed Central  Google Scholar 

  68. Gopi M, Dhayanithi NB, Devi KN, Kumar TTA (2014) Marine natural product, Pyrrolo [1,2-a] pyrazine–1,4-dione, hexahydro-(C7H10N2O2) of antioxidant properties from Bacillus species at Lakshadweep archipelago. J Coast Life Med 2:632–637. doi:10.12980/jclm.2.201414j40

    CAS  Google Scholar 

  69. Gohar YM, El-Naggar MMA, Soliman MK, Barakat KM (2010) Characterization of marine Burkholderia cepacia antibacterial agents. J Nat Prod 3:86–94

    CAS  Google Scholar 

  70. Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14:175–184. doi:10.1163/138855411x584124

    Article  CAS  Google Scholar 

  71. Manimaran M, Gopal JV, Kannabiran K (2015) Antibacterial activity of Streptomyces sp. VITMK1 isolated from mangrove soil of Pichavaram, Tamil Nadu, India. Proc Indian Acad Sci Sect B. doi:10.1007/s40011-015-0619-5

    Google Scholar 

  72. Narasaiah BC, Leelavathi V, Sudhakar G, Mariyadasu P, Swapna G, Manne AK (2014) Isolation and structural confirmation of bioactive compounds produced by the strain Streptomyces albus CN-4. IOSR J Pharm Biol Sci 9:49–54. doi:10.9790/3008-09654954

    Google Scholar 

  73. Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SCN, Pellizari VH (2013) Isolation and biological activities of an endophytic Mortierella alpine strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15. doi:10.1007/s00792-013-0588-7

    Article  PubMed  Google Scholar 

  74. Hong S, Moon BH, Yong Y, Shin SY, Lee YH, Lim Y (2008) Inhibitory effect against Akt of cyclic dipeptides isolated from Bacillus sp. J Microbiol Biotechnol 18:682–685

    CAS  PubMed  Google Scholar 

  75. Narendhran S, Rajiv P, Vanathi P, Sivaraj R (2014) Spectroscopic analysis of bioactive compounds from Streptomyces cavouresis KU-V39: evaluation of antioxidant and cytotoxicity activity. Int J Pharm Pharmaceut Sci 6:322

    Google Scholar 

  76. Chen HM, Wu YC, Chia YC, Chang FR, Hsu HK, Hsieh YC, Chen CC, Yuan SS (2009) Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett 286:161–171. doi:10.1016/j.canlet.2009.05.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by MOSTI eScience Funds (Grant Nos. 02-02-10-SF0215, 06-02-10-SF0300) and University of Malaya for High Impact Research Grant (Grant Nos. H-50001-A000027, A000001-50001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bey-Hing Goh or Learn-Han Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azman, AS., Othman, I., Fang, CM. et al. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol 57, 177–187 (2017). https://doi.org/10.1007/s12088-016-0627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0627-z

Keywords

Profiles

  1. Chee-Mun Fang