Skip to main content
Log in

Exploiting Phosphate-Starved cells of Scenedesmus sp. for the Treatment of Raw Sewage

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Phosphate depletion is one of the favorable ways to enhance the sewage water treatment with the algae, however, detailed information is essential with respect to internal phosphate concentration and physiology of the algae. The growth rate of the phosphate-starved Scenedesmus cells was reduced drastically after 48 h. Indicating cells entered in the stationary phase of the growth cycle. Fourier Transform Infrared analysis of phosphate-starved Scenedesmus cells showed the reduction in internal phosphate concentration and an increase in carbohydrate/phosphate and carbohydrate/lipid ratio. The phosphate-starved Scenedesmus cells, with an initial cell density of, 1 × 106 cells mL−1 shows 87% phosphate and 100 % nitrogen removal in 24 h. The normal Scenedesmus cells need approximately 48 h to trim down the nutrients from wastewater up to this extent. Other microalgae, Ankistrodesmus, growth pattern was not affected due to phosphate starvation. The cells of Ankistrodesmus was able to reduce 71% phosphate and 73% nitrogen within 24 h, with an initial cell density of, 1 × 106 cells mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de-Bashan LE, Bashan Y (2004) Recent advances in removing phosphorous from wastewater and its future use as fertilizer (1997–2003). Water Res 38:4222–4246. doi:10.1016/j.waters.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  2. Powell N, Shilton AN, Pratt S et al (2008) Factors influencing luxury uptake of phosphate by microalgae in waste stabilization pond. Environ Sci Technol 42:5958–5962. doi:10.1021/es703118s

    Article  CAS  PubMed  Google Scholar 

  3. Woertz I, Feffer A, Lundquist T et al (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122. doi:10.1061/9ASCE0EE.1943-7870.0000129

    Article  CAS  Google Scholar 

  4. Xin L, Hong-Ying H, Ke G et al (2010) Effect of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of fresh water microalga Scenedesmus sp. Bioresour Technol 101:5494–5600. doi:10.1016/j.biortech.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  5. Olguin E (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotech Adv 30:1031–1046. doi:10.1016/j.biotechadv.2012.05.001

    Article  CAS  Google Scholar 

  6. Wang C, Yu X, Lv H et al (2013) Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J Environ Biol 34:421–425

    PubMed  Google Scholar 

  7. Lau SP, Tam FYN, Wong SY (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66. doi:10.1016/0269-7491(94)00044-E

    Article  CAS  Google Scholar 

  8. Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Technol 38:190–198. doi:10.1016/j.enzmictec.2005.06.005

    Article  CAS  Google Scholar 

  9. Zhang E, Wang B, Wang Q et al (2008) Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793. doi:10.1016/j.biortech.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  10. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390. doi:10.1023/A:1020238520948

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz-Marin A, Mendoza- Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi continuous culture treating real wastewater. Bioresour Technol 101:58–64. doi:10.1016/j.biortech.2009.02.076

    Article  CAS  PubMed  Google Scholar 

  12. Eixler S, Karsten U, Seling U (2006) Phosphorus storage in Chlorellavulgaris (Trebouxiphyceae, Chlorophyta) cells and it’s dependence on phosphate supply. Phycologia 45:53–60. doi:10.2216/04-79.1

    Article  Google Scholar 

  13. Prieto B, Pardo MA, Garbisu C et al (1997) Phosphate uptake by phosphate starved cells of cyanobacterium Phormidium laminosum. World J Microbiol Biotechnol 13:699–705. doi:10.1023/A:1018583224294

    Article  CAS  Google Scholar 

  14. Yao B, Xi B, Hu C et al (2011) A model and experimental study of phosphate uptake kinetics in algae considering surface adsorption and P-stress. J Environ Sci 23:189–198. doi:10.1016/S1001-0742(10)60392-0

    Article  CAS  Google Scholar 

  15. Zhang E, Wang B, Ning S et al (2012) Ammonia–nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment. Afr J Biotechnol 11:6529–6534. doi:10.5897/AJB11.4281

    Article  CAS  Google Scholar 

  16. Jebsen C, Norici A, Wagner H et al (2012) FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant 146:427–438. doi:10.1111/j.1399-3054.2012.01636.x

    Article  CAS  PubMed  Google Scholar 

  17. Duygu D, Udoh UA, Ozer T et al (2012) Flourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr J Biotechnol 11:3817–3824. doi:10.5897/AJB11.1863

    CAS  Google Scholar 

  18. D’Souza L, Devi P, DivyaShridhar MP et al (2008) Use of Fourier transform Infrared (FTIR) spectroscopy to study cadmium induced changes in Padina tetrastromatica (Hauck). Anal Chem Insights 3:135–143

    PubMed  PubMed Central  Google Scholar 

  19. Beardall J, Breman T, Heraud P et al (2001) A comparison of methods for detection of phosphate limitation in microalgae. Aquat Sci 63:107–121. doi:10.1007/PL00001342

    Article  CAS  Google Scholar 

  20. Devi MP, Subhash GV, Mohan SV (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energ 43:276–283. doi:10.1016/j.renene.2011.11.021

    Article  Google Scholar 

  21. Singh G, Thomas PB (2012) Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. BioresourTechnol 117:80–85. doi:10.1016/j.biortech.2012.03.125

    Article  CAS  Google Scholar 

  22. Clescir LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. Americal Public Health Asscoiation, American Water Work Association, Water Environment Federation (APHA, AWWA, and WEF). Washington, DC, USA

  23. Maher W, Krikowa F, Louie HW et al (2002) Determination of total phosphorus and nitrogen in turbid wasters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: comparison with Kjeldahl digestion. Anal Chem Acta 463:283–293. doi:10.1016/S0003-2670(02)00346-X

    Article  CAS  Google Scholar 

  24. Stehfest K, Toepel J, Wilhelm C (2005) The application of micro-FTIR spectroscopy to analyze nutrient stress related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43:717–726. doi:10.1016/j.plaphy.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  25. Ponnuswamy I, Madhavan S, Shabudeen S (2013) Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio fuel production. Int J Biosci Biotechnol 5:17–26

    Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledged CSIR, Government of India for funding for this work.

Funding

Financial support from CSIR, Government of India under project “Clean Water: Recovery of water from domestic wastewater using membrane-based systems Project code# ESC0306”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kamble.

Ethics declarations

Conflict of interest

No potential conflicts of interest was reported by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yewalkar-Kulkarni, S., Gera, G., Nene, S. et al. Exploiting Phosphate-Starved cells of Scenedesmus sp. for the Treatment of Raw Sewage. Indian J Microbiol 57, 241–249 (2017). https://doi.org/10.1007/s12088-016-0626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0626-0

Keywords

Navigation