Indian Journal of Microbiology

, Volume 56, Issue 2, pp 113–125 | Cite as

Biorefinery for Glycerol Rich Biodiesel Industry Waste

  • Vipin Chandra KaliaEmail author
  • Jyotsana Prakash
  • Shikha Koul
Review Article


The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.


Biorefinery Biowastes Biofuels Biopolymers Biohydrogen Methane 



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, CSIR-WUM (ESC0108) Government of India for providing necessary funds and facilities.


  1. 1.
    Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res 61:184–207Google Scholar
  2. 2.
    Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India.
  3. 3.
    Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi: 10.1007/s10295-007-0300-y PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi: 10.1007/s12088-014-0467-7 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ritari J, Koskinen K, Hultman J, Kurola JM, Kymäläinen M, Romantschuk M, Paulin L, Auvinen P (2012) Molecular analysis of meso-and thermophilic microbiota associated with anaerobic biowaste degradation. BMC Microbiol 12:121. doi: 10.1186/1471-2180-12-121 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maru BT, Bielen AAM, Kengen SWM, Constantı´ M, Medina F (2012) Biohydrogen production from glycerol using Thermotoga spp. Energy Procedia 29:300–307. doi: 10.1016/j.egypro.2012.09.036 CrossRefGoogle Scholar
  7. 7.
    Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875. doi: 10.1007/s00253-012-3921-7 PubMedCrossRefGoogle Scholar
  8. 8.
    Li C, Lesnik KL, Liu H (2013) Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies 63:4739–4768. doi: 10.3390/en6094739 CrossRefGoogle Scholar
  9. 9.
    Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M (2014) Microbial production of short chain diols. Microb Cell Fact 13:65. doi: 10.1186/s12934-014-0165-5 CrossRefGoogle Scholar
  10. 10.
    Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64:891–898. doi: 10.1007/s13213-013-0767-x PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  12. 12.
    Anitha M, Kamarudin SK, Kofli NT (2016) The potential of glycerol as a value-added commodity. Chem Eng J 295:119–130. doi: 10.1016/j.cej.2016.03.012 CrossRefGoogle Scholar
  13. 13.
    Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14. doi: 10.1016/j.btre.2015.11.002 CrossRefGoogle Scholar
  14. 14.
    Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1, 3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759. doi: 10.1007/s10529-006-9154-z PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42:740–744. doi: 10.1016/j.procbio.2007.01.001 CrossRefGoogle Scholar
  16. 16.
    Hiremath A, Kannabiran M, Rangaswamy V (2011) 1,3-Propanediol production from crude glycerol from Jatropha biodiesel process. New Biotechnol 28:19–23. doi: 10.1016/j.nbt.2010.06.006 CrossRefGoogle Scholar
  17. 17.
    Chen L, Li Y, Tian P (2016) Enhanced promoter activity by replenishment of sigma factor rpoE in Klebsiella pneumoniae. Indian J Microbiol. doi: 10.1007/s12088-016-0576-6 PubMedGoogle Scholar
  18. 18.
    Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146. doi: 10.1186/s13068-015-0336-6 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Papanikolaou S, Aggelis G (2003) Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1, 3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 78:542–547. doi: 10.1002/jctb.831 CrossRefGoogle Scholar
  20. 20.
    González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446. doi: 10.1007/s10295-004-0168-z PubMedCrossRefGoogle Scholar
  21. 21.
    Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1, 3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71. doi: 10.1016/j.biombioe.2007.06.007 CrossRefGoogle Scholar
  22. 22.
    Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas GJE, Zeng AP (2011) Production of 1, 3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112. doi: 10.1007/s00253-011-3247-x PubMedCrossRefGoogle Scholar
  23. 23.
    Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79:1189–1196. doi: 10.1002/jctb.1103 CrossRefGoogle Scholar
  24. 24.
    Szymanowska-Powałowska D, Drożdżyńska A, Remszel N (2013) Isolation of new strains of bacteria able to synthesize 1,3-propanediol from glycerol. Adv Microbiol 3:171–180. doi: 10.4236/aim.2013.32027 CrossRefGoogle Scholar
  25. 25.
    Szymanowska-Powałowska D (2014) 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electronic J Biotechnol 17:322–328. doi: 10.1016/j.ejbt.2014.10.001 CrossRefGoogle Scholar
  26. 26.
    Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of E. coli. Appl Environ Microbiol 75:1628–1634. doi: 10.1128/AEM.02376-08 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Anand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnol 29:199–205. doi: 10.1016/j.nbt.2011.05.010 CrossRefGoogle Scholar
  28. 28.
    Metsoviti M, Zeng AP, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163:408–418. doi: 10.1016/j.jbiotec.2012.11.018 PubMedCrossRefGoogle Scholar
  29. 29.
    Pachapur VL, Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Soccol CR (2015) Evidence of metabolic shift on hydrogen, ethanol and 1,3-propanediol production from crude glycerol by nitrogen sparging under micro-aerobic conditions using co-culture of Enterobacter aerogenes and Clostridium butyricum. Int J Hydrogen Energy 40:8669–8676. doi: 10.1016/j.ijhydene.2015.05.024 CrossRefGoogle Scholar
  30. 30.
    Vivek N, Pandey A, Binod P (2016) Biological valorization of pure and crude glycerol into 1, 3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresource Technol. doi: 10.1016/j.biortech.2016.02.020 Google Scholar
  31. 31.
    Varrone C, Heggeset TMB, Le SB, Haugen T, Markussen S, Skiadas IV, Gavala HN (2015) Comparison of different strategies for selection/adaptation of mixed microbial cultures able to ferment crude glycerol derived from second-generation biodiesel. BioMed Res Int 932934, 14 pages. doi:  10.1155/2015/932934
  32. 32.
    Saxena RK, Anand P, Saran S, Isar J, Agarwal L (2010) Microbial production and applications of 1,2-propanediol. Indian J Microbiol 50:2–11. doi: 10.1007/s12088-010-0017-x CrossRefGoogle Scholar
  33. 33.
    Berrios-Rivera SJ, San KY, Bennett GN (2003) The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. J Ind Microbiol Biotechnol 30:34–40. doi: 10.1007/s10295-002-0006-0 PubMedCrossRefGoogle Scholar
  34. 34.
    Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758. doi: 10.1007/s00253-009-2222-2 PubMedCrossRefGoogle Scholar
  35. 35.
    Jung JY, Yun HS, Lee J, Oh MK (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol 21:846–853. doi: 10.4014/jmb.1103.03009 PubMedCrossRefGoogle Scholar
  36. 36.
    Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108:867–879. doi: 10.1002/bit.22993 PubMedCrossRefGoogle Scholar
  37. 37.
    Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW (1983) System development of linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265. doi: 10.1263/jbb.100.260 PubMedCrossRefGoogle Scholar
  39. 39.
    Jitrwung R, Yargeau V (2015) Biohydrogen and bioethanol production from biodiesel-based glycerol by Enterobacter aerogenes in a continuous stir tank reactor. Int J Mol Sci 16:10650–10664. doi: 10.3390/ijms160510650 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. doi: 10.1002/bit.21025 PubMedCrossRefGoogle Scholar
  41. 41.
    Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351. doi: 10.1016/j.ymben.2008.08.005 CrossRefGoogle Scholar
  42. 42.
    Jarvis GN, Moore ER, Thiele JH (1997) Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J Appl Microbiol 83:166–174PubMedCrossRefGoogle Scholar
  43. 43.
    Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89:1255–1264. doi: 10.1007/s00253-010-3076-3 PubMedCrossRefGoogle Scholar
  44. 44.
    Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Joe M, Park DH, Kim CH (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour Technol 102:3918–3922. doi: 10.1016/j.biortech.2010.12.007 PubMedCrossRefGoogle Scholar
  45. 45.
    Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Kim S, Kwon O, Sohn JH, Joe MH, Park DH, Kim CH (2012) Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Process Biochem 47:156–159. doi: 10.1016/j.procbio.2011.10.011 CrossRefGoogle Scholar
  46. 46.
    Yu KO, Kim SW, Han SO (2010) Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae. Bioresour Technol 101:4157–4161. doi: 10.1016/j.biortech.2010.01.066 PubMedCrossRefGoogle Scholar
  47. 47.
    Liu X, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586. doi: 10.1016/j.biortech.2011.10.065 PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki T, Seta K, Nishikawa C, Hara E, Shigeno T, Nakajima-Kambe T (2015) Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresour Technol 176:156–162. doi: 10.1016/j.biortech.2014.10.153 PubMedCrossRefGoogle Scholar
  49. 49.
    Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In: Kalia VC (ed) Microbial Factories. Springer India, New Delhi, pp 105–119. doi: 10.1007/978-81-322-2598-0 CrossRefGoogle Scholar
  50. 50.
    Kumar N, Das D (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280–287. doi: 10.1016/S0141-0229(01)00394-5 CrossRefGoogle Scholar
  51. 51.
    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 PubMedCrossRefGoogle Scholar
  52. 52.
    Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi: 10.1016/j.biortech.2015.01.138 PubMedCrossRefGoogle Scholar
  53. 53.
    Jitrwung R, Yargeau V (2011) Optimization of media composition for the production of biohydrogen from waste glycerol. Int J Hydrogen Energy 36:9602–9611. doi: 10.1016/j.ijhydene.2011.05.092 CrossRefGoogle Scholar
  54. 54.
    Dounavis AS, Ntaikou I, Lyberatos G (2015) Production of biohydrogen from crude glycerol in an upflow column bioreactor. Bioresour Technol 198:701–708. doi: 10.1016/j.biortech.2015.09.072 PubMedCrossRefGoogle Scholar
  55. 55.
    Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 PubMedCrossRefGoogle Scholar
  57. 57.
    Pachapur VL, Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Verma M (2015) Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresour Technol 193:297–306. doi: 10.1016/j.biortech.2015.06.095 PubMedCrossRefGoogle Scholar
  58. 58.
    Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2016) Hydrogen production from biodiesel industry waste by using a co-culture of Enterobacter aerogenes and Clostridium butyricum. Biofuels. doi: 10.1080/17597269.2015.1122471 Google Scholar
  59. 59.
    Pachapur VL, Kutty P, Brar SK, Ramirez AA (2016) Enrichment of secondary wastewater sludge for production of hydrogen from crude glycerol and comparative evaluation of mono-, co-and mixed-culture systems. Int J Mol Sci 17:92. doi: 10.3390/ijms17010092 PubMedCentralCrossRefGoogle Scholar
  60. 60.
    Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  61. 61.
    Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi: 10.1007/s12088-012-0287-6 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pott RW, Howe CJ, Dennis JS (2014) The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour Technol 152:464–470. doi: 10.1016/j.biortech.2013.10.094 PubMedCrossRefGoogle Scholar
  63. 63.
    Chookaew T, Sompong O, Prasertsan P (2015) Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int J Hydrogen Energy 40:7433–7438. doi: 10.1016/j.ijhydene.2015.02.133 CrossRefGoogle Scholar
  64. 64.
    Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma G (2016) Energy balance of hydrogen production from wastes of biodiesel production. Biofuels. doi: 10.1080/17597269.2016.1153361 Google Scholar
  65. 65.
    Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrogen Energy 34:8839–8845. doi: 10.1016/j.ijhydene.2009.08.056 CrossRefGoogle Scholar
  66. 66.
    Trchounian K, Trchounian A (2015) Hydrogen production from glycerol by Escherichia coli and other bacteria: an overview and perspectives. Appl Energy 156:174–184. doi: 10.1016/j.apenergy.2015.07.009 CrossRefGoogle Scholar
  67. 67.
    Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770. doi: 10.1007/s00253-014-5600-3 PubMedCrossRefGoogle Scholar
  68. 68.
    Fountoulakis MS, Manios T (2009) Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresour Technol 100:3043–3047. doi: 10.1016/j.biortech.2009.01.016 PubMedCrossRefGoogle Scholar
  69. 69.
    López JÁS, Santos MDM, Pérez AFC, Martín AM (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour Technol 100:5609–5615. doi: 10.1016/j.biortech.2009.06.017 CrossRefGoogle Scholar
  70. 70.
    Fountoulakis MS, Petousi I, Manios T (2010) Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manage 30:1849–1853. doi: 10.1016/j.wasman.2010.04.011 CrossRefGoogle Scholar
  71. 71.
    Vlassis T, Stamatelatou K, Antonopoulou G, Lyberatos G (2013) Methane production via anaerobic digestion of glycerol: a comparison of conventional (CSTR) and high-rate (PABR) digesters. J Chem Technol Biotechnol 88:2000–2006. doi: 10.1002/jctb.4059 Google Scholar
  72. 72.
    Amon T, Amon B, Kryvoruchko V, Bodiroza V, Pötsch E, Zollitsch W (2006) Optimizing methane yield from anaerobic digestion of manure: effects of dairy systems and of glycerine supplementation. Int Congress Series 1293:217–220. doi: 10.1016/j.ics.2006.03.007 CrossRefGoogle Scholar
  73. 73.
    Castrillón L, Fernández-Nava Y, Ormaechea P, Marañón E (2011) Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresour Technol 102:7845–7849. doi: 10.1016/j.biortech.2011.05.047 PubMedCrossRefGoogle Scholar
  74. 74.
    Castrillón L, Fernández-Nava Y, Ormaechea P, Marañón E (2013) Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR. Bioresour Technol 127:312–317. doi: 10.1016/j.biortech.2012.09.080 PubMedCrossRefGoogle Scholar
  75. 75.
    Castrillón L, Marañón E, Fernández-Nava Y, Ormaechea P, Quiroga G (2013) Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR). Bioresour Technol 136:73–77. doi: 10.1016/j.biortech.2013.02.076 PubMedCrossRefGoogle Scholar
  76. 76.
    Jensen PD, Astals S, Lu Y, Devadas M, Batstone DJ (2014) Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res 67:355–366. doi: 10.1016/j.watres.2014.09.024 PubMedCrossRefGoogle Scholar
  77. 77.
    Oliveira JV, Alves MM, Costa JC (2014) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485. doi: 10.1016/j.biortech.2014.10.121 CrossRefGoogle Scholar
  78. 78.
    Panpong K, Srisuwan G, O-Thong S, Kongjan P (2014) Anaerobic co-digestion of canned seafood wastewater with glycerol waste for enhanced biogas production. Energy Procedia 52:328–336. doi: 10.1016/j.egypro.2014.07.084 CrossRefGoogle Scholar
  79. 79.
    Zhang F, Zhang Y, Chen Y, Dai K, van Loosdrecht MCM, Zeng RJ (2015) Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation. Appl Energy 148:326–333. doi: 10.1016/j.apenergy.2015.03.104 CrossRefGoogle Scholar
  80. 80.
    Nakazawa MM, Silva Júnior WRS, Kato MT, Gavazza S, Florencio L (2015) Anaerobic treatment of crude glycerol from biodiesel production. Water Sci Technol 72:1383–1389. doi: 10.2166/wst.2015.345 PubMedCrossRefGoogle Scholar
  81. 81.
    Viana MB, Freitas AV, Leitão Pinto GAS, Santaella ST (2012) Anaerobic digestion of crude glycerol: a review. Environ Technol Revs 1:81–92. doi: 10.1080/09593330.2012.692723 CrossRefGoogle Scholar
  82. 82.
    Vásquez J, Nakasaki K (2016) Effects of shock loading versus stepwise acclimation on microbial consortia during the anaerobic digestion of glycerol. Biomass Bioenergy 86:129–135. doi: 10.1016/j.biombioe.2016.02.001 CrossRefGoogle Scholar
  83. 83.
    Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM (2014) Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int J Biol Macromol 71:117–123. doi: 10.1016/j.ijbiomac.2014.04.016 PubMedCrossRefGoogle Scholar
  85. 85.
    Cavalheiro JMBT, De Almeida M, Grandfils C, Da Fonseca M (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515. doi: 10.1016/j.procbio.2009.01.008 CrossRefGoogle Scholar
  86. 86.
    Ibrahim MHA, Steinbüchel A (2009) Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75:6222–6231. doi: 10.1128/AEM.01162-09 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ashby RD, Solaiman DKY, Strahan GD (2011) Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 88:949–959. doi: 10.1007/s11746-011-1755-6 CrossRefGoogle Scholar
  88. 88.
    Dobroth ZT, Hu S, Coats ER, McDonald AG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102:3352–3359. doi: 10.1016/j.biortech.2010.11.053 PubMedCrossRefGoogle Scholar
  89. 89.
    Fu J, Sharma P, Spicer V, Krokhin OV, Zhang X, Fristensky B, Cicek N, Sparling R, Levin DB (2015) Quantitative ‘Omics analyses of medium chain length polyhydroxyalkanaote metabolism in Pseudomonas putida LS46 cultured with waste glycerol and waste fatty acids. PLoS One 10:e0142322. doi: 10.1371/journal.pone.0142322 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Povolo S, Basaglia M, Fontana F, Morelli A, Casella S (2015) Poly(hydroxyalkanoate) production by Cupriavidus necator from fatty waste can be enhanced by phaZ1 inactivation. Chem Biochem Eng Q 29:67–74. doi: 10.15255/CABEQ.2014.2248 CrossRefGoogle Scholar
  91. 91.
    Ray S, Prajapati V, Patel K, Trivedi U (2016) Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste. Int J Biol Macromol 86:741–749. doi: 10.1016/j.ijbiomac.2016.02.002 PubMedCrossRefGoogle Scholar
  92. 92.
    Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi: 10.1016/j.ijbiomac.2015.03.046 PubMedCrossRefGoogle Scholar
  93. 93.
    Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. doi: 10.1016/j.procbio.2007.08.008 CrossRefGoogle Scholar
  94. 94.
    Athalye SK, Garcia RA, Wen ZY (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744. doi: 10.1021/jf803922w PubMedCrossRefGoogle Scholar
  95. 95.
    Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol 142:400–406. doi: 10.1016/j.biortech.2013.04.107 PubMedCrossRefGoogle Scholar
  96. 96.
    Lung YT, Tan CH, Show PL, Ling TC, Lan JCW, Lam HL, Chang JS (2016) Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21. Clean Technol Environ J. doi: 10.1007/s10098-016-1126-y Google Scholar
  97. 97.
    Zheng XJ, Jin KQ, Lei Zhang L, Wang G, Liu YP (2016) Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz J Microbiol. doi: 10.1016/j.bjm.2015.11.020 PubMedGoogle Scholar
  98. 98.
    Ethier S, Woisard K, Vaughan D, Wen ZY (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93. doi: 10.1016/j.biortech.2010.05.021 PubMedCrossRefGoogle Scholar
  99. 99.
    Liang YN, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol 101:6745–6750. doi: 10.1016/j.biortech.2010.03.087 PubMedCrossRefGoogle Scholar
  100. 100.
    Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoide by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983. doi: 10.1007/s10529-011-0672-y PubMedCrossRefGoogle Scholar
  101. 101.
    O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoide on glycerol. Bioprocess Biosyst Eng 34:121–125. doi: 10.1007/s00449-010-0474-y PubMedCrossRefGoogle Scholar
  102. 102.
    Muto M, Tanaka M, Liang Y, Yoshino T, Matsumoto M, Tanaka T (2015) Enhancement of glycerol metabolism in the oleaginous marine diatom Fistulifera solaris JPCC DA0580 to improve triacylglycerol productivity. Biotechnol Biofuels 8:4. doi: 10.1186/s13068-014-0184-9 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liang YN, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586. doi: 10.1016/j.biortech.2010.04.061 PubMedCrossRefGoogle Scholar
  104. 104.
    Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218. doi: 10.1016/j.procbio.2010.08.009 CrossRefGoogle Scholar
  105. 105.
    Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108. doi: 10.1016/ CrossRefGoogle Scholar
  106. 106.
    Spier F, Buffon JG, Bukert CAV (2015) Bioconversion of raw glycerol generated from the synthesis of biodiesel by different oleaginous yeasts: lipid content and fatty acid profile of biomass. Indian J Microbiol 55:415–422. doi: 10.1007/s12088-015-0533-9 PubMedCrossRefGoogle Scholar
  107. 107.
    Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO (2013) Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate. Biotechnol Bioeng 110:343–347. doi: 10.1002/bit.24623 PubMedCrossRefGoogle Scholar
  108. 108.
    Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070. doi: 10.1111/j.1365-2672.2008.03839.x PubMedCrossRefGoogle Scholar
  109. 109.
    Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ (2015) Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels 8:31. doi: 10.1186/s13068-015-0209-z PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Stefan A, Hochkoeppler A, Ugolini L, Lazzeri L, Conte E (2015) The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation. Biotechnol Prog 32:26–35. doi: 10.1002/btpr.2189 PubMedCrossRefGoogle Scholar
  111. 111.
    Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87. doi: 10.1002/lite.200900017 CrossRefGoogle Scholar
  112. 112.
    Rywińska A, Rymowicz W, Żlarowska B (2009) Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol 47:1–6Google Scholar
  113. 113.
    Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380. doi: 10.1007/s10529-008-9884-1 PubMedCrossRefGoogle Scholar
  114. 114.
    Kamzolova SV, Fatykhova AR, Dedyukhina EG, Anastassiadis SG, Golovchenko NP, Morgunov IG (2011) Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol 49:65–74Google Scholar
  115. 115.
    Murakami N, Oba M, Iwamoto M, Tashiro Y, Noguchi T, Bonkohara K, Abdel-Rahman MA, ZendoT Shimoda M, Sakai K, Sonomoto K (2016) L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. J Biosci Bioeng 121:89–95. doi: 10.1016/j.jbiosc.2015.05.009 PubMedCrossRefGoogle Scholar
  116. 116.
    Wang K, Wang X, Xizhen G (1007) Tian P (2012) Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian J Microbiol 52:478–483. doi: 10.1007/s12088-012-0280-0 CrossRefGoogle Scholar
  117. 117.
    Li Y, Ge X, Tian P (2013) Gene arrangements in expression vector affect 3-hydroxypropionic acid production in Klebsiella pneumoniae. Indian J Microbiol 53:418–424. doi: 10.1007/s12088-013-0390-3 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sabet-Azad R, Sardari RRR, Linares-Pastén JA (2015) Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization. Bioresour Technol 180:214–221. doi: 10.1016/j.biortech.2014.12.109 PubMedCrossRefGoogle Scholar
  119. 119.
    da Silva Delabona P, Lima DJ, Robl D, Rabelo SC, Farnis CS, da Cruz Pradella JG (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-016-1744-8 Google Scholar
  120. 120.
    Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 31:1947–1951. doi: 10.1007/s10529-009-0104-4 PubMedCrossRefGoogle Scholar
  121. 121.
    Tang S, Boehme L, Lam H, Zhang Z (2009) Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochem Eng J 43:157–162. doi: 10.1016/j.bej.2008.09.020 CrossRefGoogle Scholar
  122. 122.
    Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC®6013™ utilizing biodiesel derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy 28:100–110. doi: 10.1002/ep.10350 CrossRefGoogle Scholar
  123. 123.
    Çelik E, Ozbay N, Oktar N, Çalik P (2008) Use of biodiesel byproduct crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind Eng Chem Fundam 47:2985–2990. doi: 10.1021/ie071613o CrossRefGoogle Scholar
  124. 124.
    Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360. doi: 10.1016/j.biortech.2011.04.081 PubMedCrossRefGoogle Scholar
  125. 125.
    Habe H, Shimada Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Sakaki K (2009) Production of glyceric acid by Gluconobacter sp NBRC3259 using raw glycerol. Biosci Biotechnol Biochem 73:1799–1805. doi: 10.1271/bbb.90163 PubMedCrossRefGoogle Scholar
  126. 126.
    Volpato G, Rodrigues RC, Heck JX, Ayub MAZ (2008) Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate. J Chem Technol Biotechnol 83:821–828. doi: 10.1002/jctb.1875 CrossRefGoogle Scholar
  127. 127.
    Liu Y, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol 102:3927–3933. doi: 10.1016/j.biortech.2010.11 PubMedCrossRefGoogle Scholar
  128. 128.
    Nitayavardhana S, Khanal SK (2011) Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour Technol 102:5808–5814. doi: 10.1016/j.biortech.2011.02.058 PubMedCrossRefGoogle Scholar
  129. 129.
    Sun F (2008) Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479. doi: 10.1016/j.biortech.2007.11.001 PubMedCrossRefGoogle Scholar
  130. 130.
    Bodík I, BlŠťáková A, Sedláček S, Hutnan M (2009) Biodiesel waste as source of organic carbon for municipal WWTP denitrification. Bioresour Technol 100:2452–2456. doi: 10.1016/j.biortech.2008.11.050 PubMedCrossRefGoogle Scholar
  131. 131.
    Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N (2011) Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour Technol 102:411–415. doi: 10.1016/j.biortech.2010.05.059 PubMedCrossRefGoogle Scholar
  132. 132.
    Dasari M (2007) Crude glycerol potential described. Feedstuffs 79:1–3Google Scholar
  133. 133.
    Schieck SJ, Kerr BJ, Baidoo SK, Shurson GC, Johnston LJ (2010) Use of crude glycerol, a biodiesel coproduct, in diets for lactating sows. J Anim Sci 88:2648–2656. doi: 10.2527/jas.2009-2609 PubMedCrossRefGoogle Scholar
  134. 134.
    Shields MC, Heugten EV, Lin X, Odle J, Stark CS (2011) Evaluation of the nutritional value of glycerol for nursery pigs. J Anim Sci 89:2145–2153. doi: 10.2527/jas.2010-3558 PubMedCrossRefGoogle Scholar
  135. 135.
    Hampy KR, Kellogg DW, Coffey KP, Kegley EB, Caldwell JD, Lee MS, Akins MS, Reynolds JL, Moore JC, Southern KD (2008) Glycerol as a supplemental energy source for meat goats. AAES Res Ser 553:63–64Google Scholar
  136. 136.
    Gunn PJ, Neary MK, Lemenager RP, Lake SL (2010) Effects of crude glycerin on performance and carcass characteristics of finishing wether lambs. J Anim Sci 88:1771–1776. doi: 10.2527/jas.2009-2325 PubMedCrossRefGoogle Scholar
  137. 137.
    Parsons GL, Shelor MK, Drouillard JS (2009) Performance and carcass traits of finishing heifers fed crude glycerin. J Anim Sci 87:653–657. doi: 10.2527/jas.2008-1053 PubMedCrossRefGoogle Scholar
  138. 138.
    Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels 5:13. doi: 10.1186/1754-6834-5-13 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Cerrate S, Yan F, Wang Z, Coto C, Sacakli P, Waldroup PW (2006) Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. Int J Poult Sci 5:1001–1007. doi: 10.3923/ijps.2006.1001.1007 CrossRefGoogle Scholar
  140. 140.
    Lammers PJ, Kerr BJ, Weber TE, Dozier WA III, Kidd MT, Bregendahl K, Honeyman MS (2008) Digestible and metabolizable energy of crude glycerol for growing pigs. J Anim Sci 86:602–608. doi: 10.2527/jas.2007-0453 PubMedCrossRefGoogle Scholar
  141. 141.
    Donkin SS, Koser SL, White HM, Doane PH, Cecava MJ (2009) Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. J Dairy Sci 92:5111–5119. doi: 10.3168/jds.2009-2201 PubMedCrossRefGoogle Scholar
  142. 142.
    Asdrubali F, Cotana F, Rossi F, Presciutti A, Rotili A, Guattari C (2015) Life cycle assessment of new oxy-fuels from biodiesel-derived glycerol. Energies 8:1628–1643. doi: 10.3390/en8031628 CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2016

Authors and Affiliations

  • Vipin Chandra Kalia
    • 1
    • 2
    Email author
  • Jyotsana Prakash
    • 1
    • 2
  • Shikha Koul
    • 1
    • 2
  1. 1.Microbial Biotechnology and GenomicsCSIR - Institute of Genomics and Integrative Biology (IGIB)DelhiIndia
  2. 2.Academy for Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations