Abstract
Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1′a, Y1′b and Y3′ showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1′a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1′a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 22 full factorial design was performed considering the variables—pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1′a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively.



Similar content being viewed by others
References
Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337. doi:10.1080/00908310390266643
Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088
Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 1:1–15. doi:10.1155/2012/989572
Mamman AS, Lee JM, Kim YC, Hwang IT, No-J P, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylose derived biochemical. Biofuels Bioprod Biorefin 2:438–454. doi:10.1002/bbb.95
Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950
Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766. doi:10.1016/j.biortech.2009.10.097
Larsson S, Reimann A, Nilvebrant N, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103. doi:10.1385/ABAB:77:1-3:91
Melo WGP, Arcuri SL, Rodrigues A, Morais PB, Meirelles LA, Pagnocca FC (2014) Starmerella aceti f.a., sp. nov., an ascomycetous yeast species isolated from fungus garden of the leafcutter ant Acromyrmex balzani. Int J Syst Evol Microbiol 64:1428–1433. doi:10.1099/ijs.0.058818-0
Almeida JRM, Modig T, Petersson A, Hän-Hagerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349. doi:10.1002/jctb.1676
Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10
Chandel AK, da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering towards white biotechnology. BioEnergy Res 6:388–401. doi:10.1007/s12155-012-9241-z
Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. Nov., Lindnera gen. nov. and Wickerhamomyces gen.nov. FEMS Yeast Res 8:939–954. doi:10.1111/j.1567-1364.2008.00419.x
Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503
Luo C, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138. doi:10.1016/S0961-9534(01)00061-7
Aguilar R, Ramírez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugarcane bagasse. J Food Eng 55:309–318. doi:10.1016/S0260-8774(02)00106-1
Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. doi:10.1016/j.bej.2009.05.012
Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536
Martiniano SE, Philippini RR, Chandel AK, Soares LCR, Pagnocca FC, da Silva SS (2013) Evaluation of new xylose fermenting yeast strains from Brazilian ecosystems for ethanol production from sugarcane bagasse hemicellulose hydrolysate. 3 Biotech 3:345–352. doi:10.1007/s13205-013-0145-1
Parajó JC, Dominguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol 21:18–24. doi:10.1016/S0141-0229(96)00210-4
Carvalho GBM, Mussato SI, Cândido EJ, Silva JBA (2006) Comparison of different procedures for the detoxification of Eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157
Fonseca BG, Moutta RO, Ferraz FO, Vieira ER, Nogueira AS, Baratella BF, Rodrigues LC, Hou-Rui Z, da Silva SS (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 2006097 yeast. J Ind Microbiol Biotechnol 38:199–207. doi:10.1007/s10295-010-0845-z
Hou-Rui Z, Xiang-Xiang Q, da Silva SS, Sarrouh BF, Ai-Hua C, Yu-Heng Z, Ke J, Qiu X (2009) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152:199–212. doi:10.1007/s12010-008-8249-5
Acknowledgments
Authors thank to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – BIOEN Project Grants: 2008/57926-4 and 2010/13828-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process No. 150745/2015-0 and 401308/2014-6) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors also declare that they have no conflict of interest in the publication.
Rights and permissions
About this article
Cite this article
Soares, L.C.S.R., Chandel, A.K., Pagnocca, F.C. et al. Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate. Indian J Microbiol 56, 172–181 (2016). https://doi.org/10.1007/s12088-016-0573-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12088-016-0573-9


