Skip to main content
Log in

Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1′a, Y1′b and Y3′ showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1′a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1′a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 22 full factorial design was performed considering the variables—pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1′a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337. doi:10.1080/00908310390266643

    Article  CAS  Google Scholar 

  2. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  PubMed  Google Scholar 

  3. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 1:1–15. doi:10.1155/2012/989572

    Article  Google Scholar 

  4. Mamman AS, Lee JM, Kim YC, Hwang IT, No-J P, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylose derived biochemical. Biofuels Bioprod Biorefin 2:438–454. doi:10.1002/bbb.95

    Article  CAS  Google Scholar 

  5. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  PubMed  Google Scholar 

  6. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766. doi:10.1016/j.biortech.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  7. Larsson S, Reimann A, Nilvebrant N, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103. doi:10.1385/ABAB:77:1-3:91

    Article  Google Scholar 

  8. Melo WGP, Arcuri SL, Rodrigues A, Morais PB, Meirelles LA, Pagnocca FC (2014) Starmerella aceti f.a., sp. nov., an ascomycetous yeast species isolated from fungus garden of the leafcutter ant Acromyrmex balzani. Int J Syst Evol Microbiol 64:1428–1433. doi:10.1099/ijs.0.058818-0

    Article  PubMed  Google Scholar 

  9. Almeida JRM, Modig T, Petersson A, Hän-Hagerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349. doi:10.1002/jctb.1676

    Article  CAS  Google Scholar 

  10. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  PubMed  Google Scholar 

  11. Chandel AK, da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering towards white biotechnology. BioEnergy Res 6:388–401. doi:10.1007/s12155-012-9241-z

    Article  CAS  Google Scholar 

  12. Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. Nov., Lindnera gen. nov. and Wickerhamomyces gen.nov. FEMS Yeast Res 8:939–954. doi:10.1111/j.1567-1364.2008.00419.x

    Article  CAS  PubMed  Google Scholar 

  13. Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  14. Luo C, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138. doi:10.1016/S0961-9534(01)00061-7

    Article  CAS  Google Scholar 

  15. Aguilar R, Ramírez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugarcane bagasse. J Food Eng 55:309–318. doi:10.1016/S0260-8774(02)00106-1

    Article  Google Scholar 

  16. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. doi:10.1016/j.bej.2009.05.012

    Article  CAS  Google Scholar 

  17. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    Article  CAS  PubMed  Google Scholar 

  18. Martiniano SE, Philippini RR, Chandel AK, Soares LCR, Pagnocca FC, da Silva SS (2013) Evaluation of new xylose fermenting yeast strains from Brazilian ecosystems for ethanol production from sugarcane bagasse hemicellulose hydrolysate. 3 Biotech 3:345–352. doi:10.1007/s13205-013-0145-1

    Article  PubMed Central  Google Scholar 

  19. Parajó JC, Dominguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol 21:18–24. doi:10.1016/S0141-0229(96)00210-4

    Article  Google Scholar 

  20. Carvalho GBM, Mussato SI, Cândido EJ, Silva JBA (2006) Comparison of different procedures for the detoxification of Eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157

    Article  CAS  Google Scholar 

  21. Fonseca BG, Moutta RO, Ferraz FO, Vieira ER, Nogueira AS, Baratella BF, Rodrigues LC, Hou-Rui Z, da Silva SS (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 2006097 yeast. J Ind Microbiol Biotechnol 38:199–207. doi:10.1007/s10295-010-0845-z

    Article  CAS  PubMed  Google Scholar 

  22. Hou-Rui Z, Xiang-Xiang Q, da Silva SS, Sarrouh BF, Ai-Hua C, Yu-Heng Z, Ke J, Qiu X (2009) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152:199–212. doi:10.1007/s12010-008-8249-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP – BIOEN Project Grants: 2008/57926-4 and 2010/13828-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process No. 150745/2015-0 and 401308/2014-6) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio S. da Silva.

Ethics declarations

Conflict of interest

The authors also declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, L.C.S.R., Chandel, A.K., Pagnocca, F.C. et al. Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate. Indian J Microbiol 56, 172–181 (2016). https://doi.org/10.1007/s12088-016-0573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0573-9

Keywords