Skip to main content
Log in

Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR (1H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC–MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL−1. MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Andrade G, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:12. doi:10.1186/1476-0711-12-12

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tong SYC, McDonald MI, Holt DC, Currie BJ (2008) Global implications of the emergence of community-associated methicillin-resistant Staphylococcus aureus in indigenous populations. Clin Infect Dis 46:1871–1878. doi:10.1086/588301

    Article  PubMed  Google Scholar 

  3. Jevons MP (1961) Celbenin-resistant Staphylococci. Br Med J 1:124–125

    Article  PubMed Central  Google Scholar 

  4. Mohammad H, Reddy PV, Monteleone D, Mayhoub AS, Cushman M, Seleem MN (2015) Synthesis and antibacterial evaluation of a novel series of synthetic phenylthiazole compounds against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 94:306–316. doi:10.1016/j.ejmech.2015.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel BA, Ashby CR Jr, Hardej D, Talele TT (2013) The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant Staphylococcus aureus (MRSA) compounds. Bioorg Med Chem Lett 23:5523–5527. doi:10.1016/j.bmcl.2013.08.059

    Article  CAS  PubMed  Google Scholar 

  6. Alipiah NM, Shamsudin MN, Yusoff FM, Arshad A (2015) Membrane biosynthesis gene disruption in methicillin-resistant Staphylococcus aureus (MRSA) as potential mechanism for reducing antibiotic resistance. Indian J Microbiol 55:41–49. doi:10.1007/s12088-014-0488-2

    Article  CAS  Google Scholar 

  7. Isnansetyo A, Kamei Y (2009) Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30. Int J Antimicrob Agents 34:131–135. doi:10.1016/j.ijantimicag.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  8. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529. doi:10.1128/AEM.70.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mondol MAM, Tareq FS, Kim JH, Lee M, Lee HS, Lee YJ, Lee JS, Shin HJ (2011) Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp. J Nat Prod 74:2582–2587. doi:10.1021/np200487k

    Article  CAS  PubMed  Google Scholar 

  10. Eom SH, Kim YM, Kim SK (2013) Marine bacteria: potential sources for compounds to overcome antibiotic resistance. Appl Microbiol Biotechnol 97:4763–4773. doi:10.1007/s00253-013-4905-y

    Article  CAS  PubMed  Google Scholar 

  11. Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Good Fellow M, Jones A, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163. doi:10.1038/ja.2008.125

    Article  CAS  PubMed  Google Scholar 

  12. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623. doi:10.3390/su2061602

    Article  CAS  Google Scholar 

  13. Barsby T, Kelly MT, Gagne SM, Andersen RJ (2001) Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3:437–440. doi:10.1021/ol006942q

    Article  CAS  PubMed  Google Scholar 

  14. Gerard JM, Haden P, Kelly MT, Andersen RJ (1999) Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62:80–85. doi:10.1021/np980219f

    Article  CAS  PubMed  Google Scholar 

  15. Zobell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

    Google Scholar 

  16. Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65. doi:10.1139/W05-106

    Article  CAS  PubMed  Google Scholar 

  17. Selvin J, Shanmughapriya S, Gandhimathi R, Kiran GS, Ravji TR, Natarajaseenivasan K, Hema TA (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83:435–445. doi:10.1007/s00253-009-1878-y

    Article  CAS  PubMed  Google Scholar 

  18. Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom ST, Lam KS, Mosca DA, Lloyd GK, Potts BC (2005) Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243. doi:10.1021/np049725x

    Article  CAS  PubMed  Google Scholar 

  19. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36:493–496

    Google Scholar 

  20. NCCLS—National Committee for Clinical Laboratory Standards (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 7th edn. NCCLS document M7-A7. National Committee for Clinical Laboratory Standards. Wayne PA, USA

  21. Pucci MJ, Podos SD, Thanassi JA, Leggio MJ, Bradbury BJ, Deshpande M (2011) In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 55:2860. doi:10.1128/AAC.01666-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. NCCLS—National Committee for Clinical Laboratory Standards (1999) Methods for determining bactericidal activity of antimicrobial agents. Approved guideline, NCCLS document M26-A. National Committee for Clinical Laboratory Standards, Wayne PA, USA

  23. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides Gramicidin S and PGLa as revealed by Transmission and Scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142. doi:10.1128/AAC.00124-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (2000) Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 44:827. doi:10.1128/AAC.44.4.827-834.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34:10319–10327. doi:10.1016/j.biomaterials.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  26. Darabpour E, Ardakani MR, Motamedi H, Ronagh MT (2012) Isolation of a potent antibiotic producer bacterium, especially against MRSA, from northern region of the Persian Gulf. Bosn J Basic Med Sci 12:108–121

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee DS, Eom SH, Jeong SY, Shin HJ, Je JY, Lee EW, Chung YH, Kim YM, Kang CK, Lee MS (2013) Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ Toxicol Pharmacol 35:171–177. doi:10.1016/j.etap.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Fang X, An F, Wang G, Zhang X (2011) Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb Cell Fact 10:98. doi:10.1186/1475-2859-10-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bambeke FV, Mingeot-Leclercq MP, Struelens MJ, Tulkens PM (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29:124–134. doi:10.1016/j.tips.2007.12.004

    Article  PubMed  Google Scholar 

  30. Ruger M, Bensch G, Tungler R, Reichl U (2012) A flow cytometric method for viability assessment of Staphylococcus aureus and Burkholderia cepacia in mixed culture. Cytometry A 81:1055–1066. doi:10.1002/cyto.a.22219

    Article  PubMed  Google Scholar 

  31. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE Jr, Gao Q, Cass RT, Karr DE, Benton BM, Humphrey PP (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the management of SRM University for providing necessary facilities for undertaking this study. The authors would like to thank the Nanotechnology Research Center for SEM analysis, Interdisciplinary Institute of Indian System of Medicine (IIISM) lab for flow cytometry analysis at SRM University and Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Chennai for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniyandi Velusamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyanthi, V., Velusamy, P. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis. Indian J Microbiol 56, 148–157 (2016). https://doi.org/10.1007/s12088-016-0566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0566-8

Keywords

Navigation