Skip to main content

Advertisement

Log in

Mycobacterium aurum is Unable to Survive Mycobacterium tuberculosis Latency Associated Stress Conditions: Implications as Non-suitable Model Organism

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium tuberculosis manages to remain latent in the human body regardless of extensive chemotherapy. Complete eradication of tuberculosis (TB) requires treatment strategies targeted against latent form of infection, in addition to the current regimen of antimycobacterials. Many in vitro and in vivo models have been proposed to imitate latent TB infection, yet none of them is able to completely mimic latent infection state of M. tuberculosis. Highly infectious nature of the pathogen requiring BSL3 facilities and its long generation time further add to complications. M. aurum has been proposed as an important model organism for high throughput screening of drugs and exhibits high genomic similarity with that of M. tuberculosis. Thus, the present study was undertaken to explore if M. aurum could be used as a surrogate organism for studies related to M. tuberculosis latent infection. M. aurum was subjected to in vitro conditions of oxygen depletion, lack of nutrients and acidic stress encountered by latent M. tuberculosis bacteria. CFU count of M. aurum cells along with any change in cell shape and size was recorded at regular intervals during the stress conditions. M. aurum cells were unable to survive for extended periods under all three conditions used in the study. Thus, our studies suggest that M. aurum is not a suitable organism to mimic M. tuberculosis persistent infection under in vitro conditions, and further studies are required on different species for the establishment of a fast growing species as a suitable model for M. tuberculosis persistent infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 4:717–731. doi:10.1046/j.1365-2958.2002.02779.x

    Article  Google Scholar 

  2. Zhang Y (2004) Persistent and dormant tubercle bacilli and latent tuberculosis. Front Biosci 9:1136–1156. doi:10.2741/1291

    Article  CAS  PubMed  Google Scholar 

  3. Amila A, Acosta A, Sarmiento ME, Suraiya S, Zafarina Z, Panneerchelvam S, Norazmi MN (2015) Sequence comparison of six human microRNAs genes between tuberculosis patients and healthy individuals. Int J Mycobacteriol 4:341–346. doi:10.1016/j.ijmyco.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  4. Zumla A, Atun R, Maeurer M, Kim PS, Jean-Philippe P, Hafner R, Schito M (2012) Eliminating tuberculosis and tuberculosis–HIV co-disease in the 21st century: key perspectives, controversies, unresolved issues, and needs. J Infect Dis 205:S141–S146. doi:10.1093/infdis/jir880

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hutter B, Dick T (1998) Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 167:7–11. doi:10.1111/j.1574-6968.1998.tb13200.x

    Article  CAS  PubMed  Google Scholar 

  6. Mayuri Bagchi G, Das TK, Tyagi JS (2002) Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR–DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol Lett 211:231–237. doi:10.1111/j.1574-6968.2002.tb11230.x

    CAS  PubMed  Google Scholar 

  7. Parikka M, Hammarén MM, Harjula SKE, Halfpenny NJ, Oksanen KE, Lahtinen MJ, Pajula ET, Pesu M, Rämet M (2012) Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathog 8:e1002944. doi:10.1371/journal.ppat.1002944

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carvalho R, de Sonneville J, Stockhammer OW, Savage NDL, Veneman WJ, Ottenhoff THM, Dirks RP, Meijer AH, Spaink HP (2011) A high throughput screen for tuberculosis progression. PLoS ONE 6:e16779. doi:10.1371/journal.pone.0016779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Archuleta RJ, Hoppes PY, Primm TP (2005) Mycobacterium avium enters a state of metabolic dormancy in response to starvation. Tuberculosis 85:147–158. doi:10.1016/j.tube.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Gupta A, Bhakta S, Kundu S, Gupta M, Srivastava BS, Srivastava R (2009) Fast-growing, non-infectious and intracellularly surviving drug-resistant Mycobacterium aurum: a model for high-throughput antituberculosis drug screening. J Antimicrob Chemother 64:774–781. doi:10.1093/jac/dkp279

    Article  CAS  PubMed  Google Scholar 

  11. Dick T, Lee BH, Murugasu-Oei B (1998) Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 163:159–164. doi:10.1111/j.1574-6968.1998.tb13040.x

    Article  CAS  PubMed  Google Scholar 

  12. Gupta A, Bhakta S (2012) An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J Antimicrob Chemother 67:1380–1391. doi:10.1093/jac/dks056

    Article  CAS  PubMed  Google Scholar 

  13. Gupta N, Singh BN (2008) Deciphering kas operon locus in Mycobacterium aurum and genesis of a recombinant strain for rational-based drug screening. J Appl Microbiol 105:1703–1710. doi:10.1111/j.1365-2672.2008.03888.x

    Article  CAS  PubMed  Google Scholar 

  14. Bartek IL, Woolhiser LK, Baughn AD, Basaraba RJ, Jacobs WR, Lenaerts AJ, Voskuil MI (2014) Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio 5:e01106–e01114. doi:10.1128/mBio.01106-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schreuder LJ, Parish T (2014) Mycobacterium tuberculosis DosR is required for activity of the PmbtB and PmbtI promoters under hypoxia. PLoS ONE 9:e107283. doi:10.1371/journal.pone.0107283

    Article  PubMed  PubMed Central  Google Scholar 

  16. Loebel RO, Shorr E, Richardson HB (1933) The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26:167–200

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453. doi:10.1128/MMBR.67.3.429-453.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saxena A, Mukherjee U, Kumari R, Singh P, Lal R (2014) Synthetic biology in action: developing a drug against MDR-TB. Indian J Microbiol 54:369–375. doi:10.1007/s12088-014-0498-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zahrt TC (2003) Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect 5:159–167. doi:10.1016/S1286-4579(02)00083-7

    Article  CAS  PubMed  Google Scholar 

  20. Sajid A, Arora G, Singhal A, Kalia VC, Singh Y (2015) Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol 69:527–547. doi:10.1146/annurev-micro-020415-111342

    Article  CAS  PubMed  Google Scholar 

  21. Koul S, Prakash J, Mishra A, Kalia VC (2015) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol. doi:10.1007/s12088-015-0558-0

    Google Scholar 

  22. Silva MT, Appelberg R, Silva MN, Macedo PM (1987) In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages. Infect Immun 55:2006–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Phelan J, Maitra A, McNerney R, Nair M, Gupta A, Coll F, Painc A, Bhakta S, Clark TC (2015) The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. Int J Mycobacteriol 4:207–216. doi:10.1016/j.ijmyco.2015.05.001

    Article  Google Scholar 

  24. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of non-replicating persistence. Infect Immun 64:2062–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim A, Eleuterio M, Hutter B, Murugasu-Oei B, Dick T (1999) Oxygen depletion-induced dormancy in Mycobacterium bovis BCG. J Bacteriol 181:2252–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Smeulders MJ, Keer J, Speight RA, Williams HD (1999) Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 181:270–283

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim SY, Lee BS, Shin SJ, Kim HJ, Park JK (2008) Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions. J Med Microbiol 57:1473–1480. doi:10.1099/jmm.0.2008/001545-0

    Article  CAS  PubMed  Google Scholar 

  28. Voskuil MI, Visconti KC, Schoolnik GK (2004) Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84:218–227. doi:10.1016/j.tube.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  29. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4:e6077. doi:10.1371/journal.pone.0006077

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seiler P, Ulrichs T, Bandermann S, Pradl L, Jörg S, Krenn V, Morawietz L, Kaufmann SHE, Aichele P (2003) Cell-wall alterations as an attribute of Mycobacterium tuberculosis in latent infection. J Infect Dis 188:1326–1331. doi:10.1086/378563

    Article  PubMed  Google Scholar 

  31. Sood S, Kaur S, Shrivastava R (2015) A lacZ reporter-based strategy for rapid expression analysis and target validation of Mycobacterium tuberculosis latent infection genes. Curr Microbiol. doi:10.1007/s00284-015-942-3

    PubMed  Google Scholar 

  32. O’Donnell G, Gibbons S (2007) Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother Res 21:653–657. doi:10.1002/ptr.2136

    Article  PubMed  Google Scholar 

  33. Kashyap VK, Gupta RK, Shrivastava R, Srivastava BS, Srivastava R, Parai MK, Singh P, Bera S, Panda G (2012) In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model. J Antimicrob Chemother 67:1188–1197. doi:10.1093/jac/dkr592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance provided by Department of Science and Technology (DST), Government of India (DST-INSPIRE Fellowship) to Mrs. Shivani Sood, is gratefully acknowledged. Authors are thankful to CDRI, Lucknow for providing the bacterial strain for study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Shrivastava.

Ethics declarations

Conflict of interest

Authors declare they have no financial/commercial conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, S., Yadav, A. & Shrivastava, R. Mycobacterium aurum is Unable to Survive Mycobacterium tuberculosis Latency Associated Stress Conditions: Implications as Non-suitable Model Organism. Indian J Microbiol 56, 198–204 (2016). https://doi.org/10.1007/s12088-016-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0564-x

Keywords

Navigation