Skip to main content
Log in

The Tussle Between Mycobacteria and Host: To Eat or Not To Eat

  • Opinion Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic process of cellular homeostasis evolutionarily conserved in eukaryotes. To block infection of intracellular bacterial pathogens, metazoans deploy autophagy for pathogen clearance through phago-lysosome formation and specific bactericidal peptides. Although an array of research have publicized the host regulatory factors, the function of bacterial effectors are yet to be understood in detail. In this article, we focus on the autophagic response to one of the most successful intracellular bacteria Mycobacterium tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. doi:10.1007/s12088-013-0443-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS (2011) Signalling mechanisms in Mycobacteria. Tuberculosis (Edinb) 91:432–440. doi:10.1016/j.tube.2011.04.005

    Article  CAS  Google Scholar 

  3. Sachdeva P, Misra R, Tyagi AK, Singh Y (2010) The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 277:605–626. doi:10.1111/j.1742-4658.2009.07479.x

    Article  CAS  PubMed  Google Scholar 

  4. Forrellad MA, Klepp LI, Gioffre A, Sabio y Garcia J, Morbidoni HR, de la Santangelo Paz M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4:3–66. doi:10.4161/viru.22329

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi:10.3109/1040841X.2010.532479

    Article  CAS  PubMed  Google Scholar 

  6. Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224. doi:10.1517/17460441.2.2.211

    Article  CAS  PubMed  Google Scholar 

  7. Purohit HJ, Cheema S, Lal S, Raut CP, Kalia VC (2007) In search of drug targets for Mycobacterium tuberculosis. Infect Disord Drug Targets 7:245–250. doi:10.2174/187152607782110068

    Article  CAS  PubMed  Google Scholar 

  8. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469:483–490. doi:10.1038/nature09657

    Article  CAS  PubMed  Google Scholar 

  9. Saxena A, Mukherjee U, Kumari R, Singh P, Lal R (2014) Synthetic biology in action: developing a drug against MDR-TB. Indian J Microbiol 54:369–375. doi:10.1007/s12088-014-0498-0

    Article  CAS  PubMed  Google Scholar 

  10. Renna M, Schaffner C, Brown K, Shang S, Tamayo MH, Hegyi K, Grimsey NJ, Cusens D, Coulter S, Cooper J, Bowden AR, Newton SM, Kampmann B, Helm J, Jones A, Haworth CS, Basaraba RJ, DeGroote MA, Ordway DJ, Rubinsztein DC, Floto RA (2011) Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest 121:3554–3563. doi:10.1172/JCI46095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, Deretic V (2013) Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 16:355–365. doi:10.1016/j.mib.2013.05.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298. doi:10.1016/j.cell.2007.05.059

    Article  PubMed  Google Scholar 

  13. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302:654–659. doi:10.1126/science.1088063

    Article  CAS  PubMed  Google Scholar 

  14. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441. doi:10.1126/science.1129577

    Article  CAS  PubMed  Google Scholar 

  15. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517. doi:10.1016/j.immuni.2007.07.022

    Article  CAS  PubMed  Google Scholar 

  16. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21:401–406. doi:10.1038/nm.3813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Taganov KD, Boldin MP, Baltimore D (2007) MicroRNAs and immunity: tiny players in a big field. Immunity 26:133–137. doi:10.1016/j.immuni.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Yang K, Zhou L, Minhaowu WuY, Zhu M, Lai X, Chen T, Feng L, Li M, Huang C, Zhong Q, Huang X (2013) MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9:e1003697. doi:10.1371/journal.ppat.1003697

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chen Z, Wang T, Liu Z, Zhang G, Wang J, Feng S, Liang J (2015) Mycobacterium tuberculosis induced miR-30A inhibit autophagy process as a possible mechanism of immune escape in human macrophage. Jpn J Infect Dis. doi:10.7883/yoken.JJID.2014.466

    Google Scholar 

  20. Kim JK, Yuk JM, Kim SY, Kim TS, Jin HS, Yang CS, Jo EK (2015) MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J Immunol 194:5355–5365. doi:10.4049/jimmunol.1402557

    Article  CAS  PubMed  Google Scholar 

  21. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW, Kyei GB, Johansen T, Vergne I, Deretic V (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32:329–341. doi:10.1016/j.immuni.2010.02.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Purdy GE, Niederweis M, Russell DG (2009) Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol 73:844–857. doi:10.1111/j.1365-2958.2009.06801.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM, Friedman RL, Jo EK (2010) Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6:e1001230. doi:10.1371/journal.ppat.1001230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV, Kim JM, Modlin RL, Jo EK (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12:1648–1665. doi:10.1111/j.1462-5822.2010.01497.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bhaduri A, Misra R, Maji A, Bhetaria PJ, Mishra S, Arora G, Singh LK, Dhasmana N, Dubey N, Virdi JS, Singh Y (2014) Mycobacterium tuberculosis cyclophilin A uses novel signal sequence for secretion and mimics eukaryotic cyclophilins for interaction with host protein repertoire. PLoS One 9:e88090. doi:10.1371/journal.pone.0088090

    Article  PubMed Central  PubMed  Google Scholar 

  26. Watson RO, Manzanillo PS, Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–815. doi:10.1016/j.cell.2012.06.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Romagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, Falasca L, Goletti D, Gafa V, Simeone R, Delogu G, Piacentini M, Brosch R, Fimia GM, Coccia EM (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8:1357–1370. doi:10.4161/auto.20881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wassermann R, Gulen MF, Sala C, Garcia Perin S, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung V, Cole ST, Ablasser A (2015) Mycobacterium tuberculosis differentially activates CGAS and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:799–810. doi:10.1016/j.chom.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:811–819. doi:10.1016/j.chom.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  30. Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, Shiloh MU (2015) Cyclic GMP–AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–828. doi:10.1016/j.chom.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  31. Dong H, Jing W, Wan W, Min M, Runpeng Z, Xuewei X, Zhaoquan C, Jian X, Fengyu H, Yabo Y, Rongbo Z (2015) Autophagy regulation revealed by SapM-induced block of autophagosome–lysosome fusion via binding RAB7. Biochem Biophys Res Commun. 461:401–407. doi:10.1016/j.bbrc.2015.04.051

    Article  Google Scholar 

  32. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234. doi:10.1016/j.immuni.2012.04.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH (2014) The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLP-MYD88 to authophagic defense. Cell Host Microbe 15:753–767. doi:10.1016/j.chom.2014.05.005

    Article  PubMed  Google Scholar 

  34. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766. doi:10.1016/j.cell.2004.11.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Niti Pathak and Dr. Mahesh Dhar for critical reading of the manuscript. We are thankful to Director, Cluster Innovation Centre for providing the platform to carry our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asani Bhaduri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaduri, A., Misra, R. & Dhamija, N. The Tussle Between Mycobacteria and Host: To Eat or Not To Eat. Indian J Microbiol 55, 456–459 (2015). https://doi.org/10.1007/s12088-015-0541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0541-9

Keywords

Navigation