Skip to main content
Log in

Phylogenetic Profiling and Diversity of Bacterial Communities in the Death Valley, an Extreme Habitat in the Atacama Desert

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 12:7902–7910. doi:10.1128/AEM.01305-06

    Article  Google Scholar 

  2. Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42:187–200. doi:10.1007/s11084-012-9289-y

    Article  CAS  PubMed  Google Scholar 

  3. Bagaley DR (2006) Uncovering bacterial diversity on and below the surface of a hyper-arid environment, the atacama desert, Chile. Thesis. Louisiana State University, USA

  4. Azua-Bustos A, González-Silva C, Arenas-Fajardo C, Vicuña R (2012) Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert coastal range case. Microbiology 3:426–435. doi:10.3389/fmicb.2012.00426

    Google Scholar 

  5. Demergasso C, Casamayor E, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama desert Northern Chile. FEMS Microbiol Ecol 48:57–69. doi:10.1016/j.femsec.2003.12.013

    Article  CAS  PubMed  Google Scholar 

  6. Connon SA, Lester ED, Shafaat HS, Obenhuber DC, Ponce A (2007) Bacterial diversity in hyperarid Atacama Desert soils. J Geophys Res 112:1–9. doi:10.1029/2006JG000311

    Google Scholar 

  7. Moreno ML, Piubeli F, Bonfa MRL, García MT, Durrant LR, Mellado E (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113:550–559. doi:10.1111/j.1365-2672.2012.05366.x

    Article  CAS  PubMed  Google Scholar 

  8. Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Cary SC, Burton SG, Cowan DA (2009) Phylogenetic analysis of active bacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 3:566–576. doi:10.1111/j.1462-2920.2008.01809.x

    Article  Google Scholar 

  9. Dorador C, Vila I, Remonsellez F, Imhoff JF, Witzel KP (2010) Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol Ecol 2:291–302. doi:10.1111/j.1574-6941.2010.00891.x

    Google Scholar 

  10. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, La Comb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566. doi:10.1007/s00792-012-0454-z

    Article  PubMed  Google Scholar 

  11. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  12. Lane DJ (1991) 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Modern microbiological methods. Wiley, New York, pp 115–148

  13. Shivaji S, Reddy GSN, Aduri RP, Kutty R, Ravenschlag KA (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    CAS  PubMed  Google Scholar 

  14. Vettore AL, Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7. doi:10.1590/S1415-47572001000100002

    Article  CAS  Google Scholar 

  15. Guo Y, Ribeiro JMC, Anderson JM, Bour S (2009) dCas: a desktop application for cDNA sequence annotation. Bioinatics 9:1195–1196. doi:10.1093/bioinformatics/btp129

    Google Scholar 

  16. Schloss PD, Westcott SL, Ryabin T (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 23:7537–7541. doi:10.1128/AEM.01541-09

    Article  Google Scholar 

  17. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 21:7188–7196. doi:10.1093/nar/gkm864

    Article  Google Scholar 

  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  19. Nam YD, Jung M-J, Roh SW, Kim MS, Bae JW (2011) Comparative analysis of Korea human gut microbiota by barcoded pyrosequencing. PLoS One 7:e22109. doi:10.1371/journal.pone.0022109

    Article  Google Scholar 

  20. Ludwig W, Strunk O (2004) ARB: a software environment for sequence data. Nucl Acids Res 4:1363–1371. doi:10.1093/nar/gkh293

    Article  Google Scholar 

  21. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenernegger M, Neumaier J, Bachleitner M, Schleifer K-H (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568. doi:10.1002/elps.1150190416

    Article  CAS  PubMed  Google Scholar 

  22. Rubin BER, Sanders JG, Hampton-Marcell J, Owens SM, Gilbert JA, Moreau CS (2014) DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. Microbiol Open. doi:10.1002/mbo3.216

    Google Scholar 

  23. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 95:121–133. doi:10.1007/s10482-008-9295-2

    Article  PubMed  Google Scholar 

  24. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir R, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond saltern. Extremophiles 12:505–518. doi:10.1007/s00792-008-0154-x

    Article  CAS  PubMed  Google Scholar 

  25. Lozupore CA, Knight R (2007) Global patterns in bacterial diversity. PNAS 27:11436–11440. doi:10.1073/pnas.0611525104

    Article  Google Scholar 

  26. Bull AT, Asenjo JA (2013) Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie Van Leeuwenhoek 6:1173–1179. doi:10.1007/s10482-013-9911-7

    Article  Google Scholar 

  27. Galperin MY (2013) Genomic diversity of spore-forming firmicutes. Microbiol Spectr 1:TBS-0015-2012. doi:10.1128/microbiolspectrum.TBS-0015-2012

  28. Lu J, Nogi Y, Takami H (2002) Oceanobacillus iheyensis gen. nov., sp. nov.In Validation List no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 52:685–690. doi:10.1099/ijs.0.02358-0

    Google Scholar 

  29. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I (2013) Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 63:3307–3312. doi:10.1099/ijs.0.048595-0

    Article  CAS  PubMed  Google Scholar 

  30. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucl Acids Res 30:3927–3935. doi:10.1093/nar/gkf526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kim YG, Choi DH, Hyun S, Cho BC (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413. doi:10.1099/ijs.0.64375-0

    Article  CAS  PubMed  Google Scholar 

  32. Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ (2006) Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257. doi:10.1099/ijs.0.63734-0

    Article  CAS  PubMed  Google Scholar 

  33. Heyrman J, Logan NA, Busse HJ, Balcaen A, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P (2003) Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens com. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511. doi:10.1099/ijs.0.02371-0

    Article  CAS  PubMed  Google Scholar 

  34. García MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795. doi:10.1099/ijs.0.63560-0

    Article  PubMed  Google Scholar 

  35. Xu D, Côté JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53:695–704. doi:10.1099/ijs.0.02346-0

    Article  CAS  PubMed  Google Scholar 

  36. Myasnik M, Manasherob R, Ben-Dov E, Zaritsky A, Margalith Y, Barak Z (2001) Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr Microbiol 43:140–143. doi:10.1007/s002840010276

    Article  CAS  PubMed  Google Scholar 

  37. Nogui Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315. doi:10.1099/ijs.0.63649-0

    Article  Google Scholar 

  38. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53:1297–1303. doi:10.1099/ijs.0.02365-0

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761. doi:10.1099/13500872-141-7-1745

    Article  CAS  Google Scholar 

  40. Palmisano MM, Nakamura LK, Duncan KE, Istock CA, Cohan FM (2001) Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. Int J Syst Evol Microbiol 51:1671–1679. doi:10.1099/00207713-51-5-1671

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura LKL, Roberts MS, Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49:1211–1215. doi:10.1099/00207713-49-3-1211

    Article  CAS  PubMed  Google Scholar 

  42. Kwon SW, Lee SY, Kim BY, Weon HY, Kim JB, Go SJ, Lee GB (2007) Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. Int J Syst Evol Microbiol 57:1909–1913. doi:10.1099/ijs.0.64178-0

    Article  PubMed  Google Scholar 

  43. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wang CY, Chang CC, Ng CC, Chen TW, Shyu YT (2008) Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58:341–345. doi:10.1099/ijs.0.64996-0

    Article  CAS  PubMed  Google Scholar 

  45. Yoon JH, Oh TK, Park YH (2004) Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int J Syst Evol Microbiol 54:2163–2167. doi:10.1099/ijs.0.63196-0

    Article  CAS  PubMed  Google Scholar 

  46. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11. doi:10.1111/j.1574-6941.2003.tb01040.x

    Article  CAS  PubMed  Google Scholar 

  47. López-García P, Kazmiercazak J, Benzerara KS, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the gians microbialites from highly alkaline lake Van, Turkey. Extremophiles 9:263–274. doi:10.1007/s00792-005-0457-0

    Article  PubMed  Google Scholar 

  48. Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, McKay CP, Diruggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28. doi:10.1186/2049-2618-1-28

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lester ED, Satomi M, Ponce A (2009) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–770. doi:10.1016/j.soilbio.2006.09.020

    Article  Google Scholar 

  50. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 8:728–760. doi:10.1080/10408398.2010.499811

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Junta de Andalucía (P08-RMN-3515 and P11-CVI-7427 MO). We are grateful to Adolfo Crespo for the support in sampling collection.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de Lourdes Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piubeli, F., de Lourdes Moreno, M., Kishi, L.T. et al. Phylogenetic Profiling and Diversity of Bacterial Communities in the Death Valley, an Extreme Habitat in the Atacama Desert. Indian J Microbiol 55, 392–399 (2015). https://doi.org/10.1007/s12088-015-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0539-3

Keywords

Navigation