Skip to main content
Log in

Anti-chlamydial IgG Neutralizing Ability in Nonzoonotic Atypical Community Acquired Respiratory Tract Infections

  • Short Communication
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chlamydophila pneumoniae is a pathogenic agent, involved in various types of infection. This study has evaluated the ability of IgG antibodies in outpatient, with acute respiratory tract infections from C. pneumoniae, to neutralize in vitro purified elementary bodies of this bacterium, revealing a good neutralizing performance of IgG antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

CAP:

Community-acquired pneumonia

EBs:

Elementary bodies

HBSS:

Hanks balanced salt solution

MIF:

Microimmunofluorescence

RT-PCR:

Real time-polymerase chain reaction

SPG:

Sucrose–potassium phosphate–glutamic acid

References

  1. Mitchell CM, Hutton S, Myers GSA, Brunham R, Timms P (2010) Chlamydia pneumoniae is genetically diverse in animals and appears to have crossed the host barrier to humans on (at least) two occasions. PLoS Pathog 6:e1000903. doi:10.1371/journal.ppat.1000903

    Article  PubMed Central  PubMed  Google Scholar 

  2. Grayston JT, Kuo CC, Wang SP, Altman J (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315:161–168. doi:10.1056/NEJM198607173150305

    Article  CAS  PubMed  Google Scholar 

  3. Miyashita N, Fukano H, Okimoto N, Hara H, Yoshida K, Niki Y, Matsushima T (2002) Clinical presentation of community-acquired Chlamydia pneumoniae pneumonia in adults. Chest 121:1776–1781. doi:10.1378/chest.121.6.1776

    Article  PubMed  Google Scholar 

  4. Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8:451–461

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Boman J, Hammerschlag MR (2002) Chlamydia pneumoniae and atherosclerosis: critical assessment of diagnostic methods and relevance to treatment studies. Clin Microbiol Rev 15:1–20. doi:10.1128/CMR.15.1.1-20.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Busatto P, Blasi F, Casanova F, Selmi C, Centanni S, Zuin M (2005) Lack of PBC-specific antimitochondrial antibodies in patients with Chlamydia pneumoniae infection. J Gastroenterol Hepatol 20:1626–1627. doi:10.1111/j.1440-1746.2005.03941.x

    Article  PubMed  Google Scholar 

  7. Fainardi E, Castellazzi M, Seraceni S, Granieri E, Contini C (2008) Under the microscope: focus on Chlamydia pneumoniae infection and multiple sclerosis. Curr Neurovasc Res 5:60–70. doi:10.2174/156720208783565609

    Article  CAS  PubMed  Google Scholar 

  8. Pignanelli S, Shurdhi A, Delucca F, Donati M (2009) Simultaneous use of direct and indirect diagnostic techniques in atypical respiratory infections from Chlamydophila pneumoniae and Mycoplasma pneumoniae. J Clin Lab Anal 23:206–209. doi:10.1002/jcla.20332

    Article  CAS  PubMed  Google Scholar 

  9. Pignanelli S, Pulcrano G, Iula VD, Zaccherini P, Testa A, Catania MR (2014) In vitro antimicrobial profile of Ureaplasma urealyticum from genital tract of childbearing-aged women in northern and southern Italy. APMIS 122:552–555. doi:10.1111/apm.12184

    Article  CAS  PubMed  Google Scholar 

  10. Donati M, Di Francesco A, Baldelli R, Magnino S, Pignanelli S, Shurdhi A, Delucca F, Cevenini R (2009) In vitro detection of neutralising antibodies to Chlamydia suis in pig sera. Vet Rec 164:173–174. doi:10.1136/vr.164.6.173

    Article  CAS  PubMed  Google Scholar 

  11. Pignanelli S, Shurdhi A (2011) In vitro activity of rifaximin against Chlamydia suis. Vet Rec 169:584. doi:10.1136/vr.100027

    Article  CAS  PubMed  Google Scholar 

  12. Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, Norais N, Laera D, Giusti F, Pierleoni A, Donati M, Cevenini R, Finco O, Grandi G, Grifantini R (2013) Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J Extracell Vesicles. doi:10.3402/jev.v2i0.20181

    PubMed Central  PubMed  Google Scholar 

  13. Phoon MC, Yee GW, Koh WP, Chow VT (2011) Comparative seroepidemiologic analysis of Chlamydophila Pneumoniae infection using microimmunofluorescence, enzyme immunoassay and neutralization test: implications for serodiagnosis. Indian J Microbiol 51:223–229. doi:10.1007/s12088-011-0168-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Baud D, Regan L, Greub G (2010) Comparison of five commercial serological tests for the detection of anti-Chlamydia trachomatis antibodies. Eur J Clin Microbiol Infect Dis 29:669–675. doi:10.1007/s10096-010-0912-4

    Article  CAS  PubMed  Google Scholar 

  15. Pignanelli S (2011) Laboratory diagnosis of Toxoplasma gondii infection with direct and indirect diagnostic techniques. Indian J Pathol Microbiol 54:786–789. doi:10.4103/0377-4929.91503

    PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pignanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pignanelli, S., Pulcrano, G., Iula, V.D. et al. Anti-chlamydial IgG Neutralizing Ability in Nonzoonotic Atypical Community Acquired Respiratory Tract Infections. Indian J Microbiol 55, 345–348 (2015). https://doi.org/10.1007/s12088-015-0527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0527-7

Keywords

Navigation