Skip to main content

Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants

Abstract

Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of thaumarchaeal ammonia monooxygenase subunit A (AOA-amoA) gene. Different primer sets targeting 16S rRNA and AOA-amoA gene were used for the detection of AOA in FPETPs. Phylogenetic analysis of the gene revealed that the AOA was affiliated with thaumarchaeal group 1.1a lineage (marine cluster). Quantitative real time PCR of amoA gene was used to study the copy number of AOA and AOB in FPETPs. The AOA-amoA and AOB-amoA gene copy numbers of sludge samples ranged from 2.2 × 106 to 4.2 × 108 and 1.1 × 107 to 8.5 × 108 mg−1 sludge respectively. Primer sets Arch-amoAF/Arch-amoAR and 340F/1000R were found to be useful for the sensitive detection of AOA-amoA and Archaeal 16S rRNA genes respectively in FPETPs. Their presence suggests the widespread occurrence and possible usefulness in removing ammonia from FPETPs which is in line with reports from other waste water treatment plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Keluskar R, Nerurkar A, Desai A (2013) Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresour Technol 130:390–397. doi:10.1016/j.biortech.2012.12.066

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecological research. Annu Rev Microbiol 55:485–529. doi:10.1146/annurev.micro.55.1.485

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi:10.1126/science.1093857

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Könneke M, Bernhard AE, de la Torre J, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546. doi:10.1038/nature03911

    PubMed  Article  Google Scholar 

  5. 5.

    He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154. doi:10.1016/j.soilbio.2012.06.006

    Article  CAS  Google Scholar 

  6. 6.

    Stahl DA, Torre RD (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101. doi:10.1146/annurev-micro-092611-150128

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Urakawa H, Tajima Y, Numata Y, Tsuneda S (2008) Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl Environ Microbiol 74:894–900. doi:10.1128/AEM.01529-07

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647. doi:10.1128/AEM.00402-06

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Limpiyakorn T, Fürhacker M (2013) amoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97:1425–1439. doi:10.1007/s00253-012-4650-7

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688. doi:10.1073/pnas.0506625102

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  11. 11.

    Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704–4712. http://aem.asm.org/content/63/12/4704

  12. 12.

    Gantner S, Andersson AF, Alono-Saez L, Bertilsson S (2011) Novel primers for 16S rRNA-based archael community analyses in environmental samples. J Microbiol Methods 84:12–18. doi:10.1016/j.mimet.2010.10.001

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457. doi:10.1146/annurev-micro-092412-155614

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Jin T, Zhang T, Yan Q (2010) Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Appl Microbiol Biotechnol 87:1167–1176. doi:10.1007/s00253-010-2595-2

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. 15.

    Limpiyakorn T, Sonthiph P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701. doi:10.1016/j.biortech.2010.11.085

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488. doi:10.1038/nrmicro1159

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured archaea. The ISME J 4:182–190. doi:10.1038/ismej.2009.109

    Article  Google Scholar 

  18. 18.

    Schleper C, Nicol GW (2010) Ammonia-oxidizing archaea—physiology, ecology and evolution. Adv Microb Physiol 57:1–41. doi:10.1016/B978-0-12-381045-8.00001-1

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Cao H, Auguet J, Gu J (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS ONE 8:e52853. doi:10.1371/journal.pone.0052853

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Sakami T, Andoh T, Morita T, Yamamoto Y (2012) Marine genomics phylogenetic diversity of ammonia-oxidizing archaea and bacteria in biofilters of recirculating aquaculture systems. Mar Genomics 7:27–31. doi:10.1016/j.margen.2012.04.006

    PubMed  Article  Google Scholar 

  21. 21.

    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869. doi:10.1111/j.1574-6976.2009.00179.x

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Subrahmanyam G, Hu HW, Zheng YM, Archana G, He JZ, Liu YR (2014) Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Appl Soil Ecol 77:59–67. doi:10.1016/j.apsoil.2014.01.011

    Article  Google Scholar 

  23. 23.

    Subrahmanyam G, Shen JP, Liu YR, Archana G, He JZ (2014) Response of ammonia oxidizing archaea and bacteria to long-term industrial effluent polluted soils, Gujarat, western India. Environ Monit Assess 186:4037–4050. doi:10.1007/s10661-014-3678-9

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Khardenavis AA, Kapley A, Purohit HJ (2010) Salicylic-acid-mediated enhanced biological treatment of wastewater. Appl Biochem Biotechnol 160:704–718. doi:10.1007/s12010-009-8538-7

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77:403–409. doi:10.1007/s00253-007-1176-5

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding provided by the ICAR- NAIP- National Fund for Basic, Strategic & Frontier Application Research in Agriculture for carrying out the study is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Indrani Karunasagar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devivaraprasad Reddy, A., Subrahmanyam, G., Shivani Kallappa, G. et al. Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants. Indian J Microbiol 54, 434–438 (2014). https://doi.org/10.1007/s12088-014-0484-6

Download citation

Keywords

  • Ammonia oxidation
  • Ammonia oxidizing archaea
  • AOA-amoA gene
  • 16S rRNA gene
  • Thaumarchaeota