Skip to main content
Log in

Hydrolyzing Proficiency of Keratinases in Feather Degradation

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The keratinase degrade highly rigid, cross linked structural polypeptides with different efficiency depending on the type of source. Two newly isolated strains of Bacillus subtilis (RSE163 and RSE165; NCBI Accession no JQ887983 and JQ887982) were found to be efficient keratinase producers with unusual catalytic activity result in different morphological changes in degradation pattern of feather, confirmed by their scanned electron micrographs. Maximum keratinolytic activity of both the strains B. subtilis RSE163 and RSE165 were found to be 366 ± 15.79 and 194 ± 7.26 U after 72 h of incubation. While the disulphide reductase activity of RSE163 and RSE165 estimated 0.24 ± 0.05 and 0.15 ± 0.03 U/ml of enzyme after 24 h of incubation. A total of 16 free amino acids of variable concentration were also analyzed in the cell free supernatant of hydrolyzed feather from two strains. Present study demonstrates the action of two different keratinases in feather degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gupta S, Singh R (2013) Statistical modeling and optimization of keratinase production from newly isolated Bacillus subtilis RSE163. Int J Adv Biotechnol Res 4:167–174

    Google Scholar 

  2. Gupta A, Kamarudin NB, Kee CYG, Yunus RBM (2012) Extraction of keratin protein from chicken feather. J Chem Chem Eng 6:732–737

    CAS  Google Scholar 

  3. Deivasigamani B, Alagappan KM (2008) Industrial application of keratinase and soluble proteins from feather keratins. J Env Biol 29:933–936

    CAS  Google Scholar 

  4. Kainoor PS, Naik GR (2010) Production and characterization of feather degrading keratinase from Bacillus sp. JB 99. Indian J Biotechnol 9:384–390

    CAS  Google Scholar 

  5. Suh HJ, Lee HK (2001) Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J Protein Chem 20:165–169. doi:10.1023/A:1011075707553

    Article  PubMed  CAS  Google Scholar 

  6. Monod M (2008) Secreted proteases from dermatophytes. Mycopathologia 166:94–285. doi:10.1007/s11046-008-9105-4

    Article  Google Scholar 

  7. Belarmino DD, Ladchumananandasivam R, Belarmino LD, Pimentel JRDM, da Rocha BG, Galvão AO, de Andrade SM (2012) Physical and morphological structure of chicken feathers (keratin biofiber) in natural, chemically and thermally modified forms. Mater Sci Appl 3:887–893. doi:10.4236/msa.2012.312129

    CAS  Google Scholar 

  8. Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196. doi:10.1139/w04-123

    Article  PubMed  CAS  Google Scholar 

  9. Nagal S, Jain PC (2010) Feather degradation by strains of Bacillus isolated from decomposing feathers. Braz J Microbiol 41:196–200. doi:10.1590/S1517-83822010000100028

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rajput R, Gupta R (2011) Enhanced production of recombinant thermostable keratinase of Bacillus pumilus KS12: degradation of sup35 NM aggregates. Res J Microbiol 6:839–850. doi:10.3923/jm.2011.839.850

    Article  CAS  Google Scholar 

  11. Schwarz EL, Roberts WL, Pasquali M (2005) Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin Chim Acta 354:83–90. doi:10.1016/j.cccn.2004.11.016

    Article  PubMed  CAS  Google Scholar 

  12. Nigam V, Singhal P, Vidyarthi A, Mohan M, Ghosh P (2013) Studies on keratinolytic activity of alkaline proteases from halophilic bacteria. Int J Pharm Bio Sci 4:389–399

    CAS  Google Scholar 

  13. Ni H, Chen QH, Chen F, Fu ML, Dong YC, Cai HN (2011) Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation. Afr J Biotechnol 10:7236–7244. doi:10.5897/AJB11.168

    CAS  Google Scholar 

  14. Awad GE, EsawyMA SalamWA, Salama BM, Abdelkader AF, El-diwany A (2011) Keratinase production by Bacillus pumilus GHD in solid-state fermentation using sugar cane bagasse: optimisation of culture conditions using a Box-Behnken experimental design. Ann Microbiol 61:663–672. doi:10.1007/s13213-010-0187-0

    Article  CAS  Google Scholar 

  15. Sivakumar T, Shankar T, Thangapandian V, Ramasubramanian V (2013) Optimization of cultural condition for keratinase production using Bacillus cereus TS1. Insight Microbiol 3:1–8. doi:10.5567/IMICRO-IK.2013.1.8

    Article  CAS  Google Scholar 

  16. Mabrouk ME (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24:2331–2338. doi:10.1007/s11274-008-9748-9

    Article  Google Scholar 

  17. Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Pyun YR (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178:538–547. doi:10.1007/s00203-002-0489-0

    Article  PubMed  CAS  Google Scholar 

  18. Mazotto AM, Coelho RRR, Cedrola SML, de Lima MF, Couri S, Paraguai de Souza E, Vermelho AB (2011) Keratinase production by three Bacillus spp. Using feather meal and whole feather as substrate in a submerged fermentation. Enzyme Res Article ID 523780. doi:10.4061/2011/523780

  19. Laba W, Szczekala KB (2013) Keratinolytic proteases in biodegrdation of pretreated feather. Pol J Environ Stud 22:1101–1109

    CAS  Google Scholar 

  20. Tandogan B, Ulusu NN (2006) Kinetic mechanism and molecular properties of glutathione reductase. FABAD J Pharm Sci 31:230–237

    Google Scholar 

  21. Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci 28:4–210. doi:10.1016/S0968-0004(03)00057-4

    Article  Google Scholar 

  22. Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394. doi:10.1111/j.1472-765X.2008.02327

    Article  PubMed  CAS  Google Scholar 

  23. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W H Freeman, New York

    Google Scholar 

  24. Al-Karadaghi S (2012) Introduction to protein structure and structural bioinformatics. http://www.proteinstructures.com/Structure/Structure/amino-acids.html. Accessed 27 Nov 2013

  25. Ray S, Kepler TB (2007) Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding. Immunome Res 3:9. doi:10.1186/1745-7580-3-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fujiwara K, Toda H, Ikeguchi M (2012) Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type. BMC Struct Biol 12:18. doi:10.1186/1472-6807-12-18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kumar EV, Srijana M, Chaitanya K, Reddy YHK, Reddy G (2011) Biodegradation of poultry feathers by a novel bacterial isolate Bacillus altitudinis GVC 11. Indian J Biotechnol 10:502–507

    CAS  Google Scholar 

  28. Agrahari S, Wadhwa N (2010) Degradation of chicken feather a poultry waste product by keratinolytic bacteria isolated from dumping site at Ghazipur poultry processing plant. Int J Poult Sci 9:482–489. doi:10.3923/ijps.2010.482.489

    Article  CAS  Google Scholar 

  29. Tiwary E, Gupta R (2012) Rapid conversion of chicken feather to feather meal using dimeric keratinase from Bacillus licheniformis ER-15. J Bioprocess Biotech 2:123. doi:10.4172/2155-9821.1000123

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Department of Anatomy, AIIMS, New Delhi, for helping the SEM analysis facility. We also extend our sincere thanks to Ministry of Environment for providing the funds and senior research fellowship to Ms Sonali Gupta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 355 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Singh, R. Hydrolyzing Proficiency of Keratinases in Feather Degradation. Indian J Microbiol 54, 466–470 (2014). https://doi.org/10.1007/s12088-014-0477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0477-5

Keywords

Navigation