Skip to main content

Advertisement

Log in

Identification and Characterization of an Invasion Antigen B Gene from the Oral Pathogen Campylobacter rectus

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The oral bacterium, Campylobacter rectus, is an etiological agent of periodontitis. The virulence genes of C. rectus are largely unknown. The aim of this study was to query C. rectus for the presence of an invasion antigen B (ciaB) gene, which is needed for cell invasion by the related species Campylobacter jejuni. PCR and PCR-walking identified a ciaB from C. rectus. In silico analyses of C. rectus 314 ciaB (Cr-ciaB) revealed an ORF of 1,830 base pairs. The Cr-CiaB protein shared significant sequence identity (BLASTx and phylogeny) with CiaB from related campylobacters. Cr-CiaB is predicted to lack membrane helices, signal peptides, and localizes to the cytoplasm; which are consistent with CiaB proteins. Expression of Cr-ciaB was confirmed with RT-PCR; and potential ciaB genes were detected in eight additional strains of C. rectus. Cr-ciaB is the first CiaB identified from the oral campylobacters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820

    Article  PubMed  Google Scholar 

  2. Teng YT et al (2002) Periodontal health and systemic disorders. J Can Dent Assoc 68:188–192

    PubMed  Google Scholar 

  3. Colombo AV et al (2006) Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions. J Med Microbiol 55:609–615

    Article  PubMed  Google Scholar 

  4. Dzink JL et al (1985) Gram negative species associated with active destructive periodontal lesions. J Clin Periodontol 5:648–659

    Article  Google Scholar 

  5. Lai CH et al (1992) Wolinella recta in adult gingivitis and periodontitis. J Periodontal Res 27:8–14

    Article  CAS  PubMed  Google Scholar 

  6. Bobetsis YA, Barros SP, Offenbacher S (2006) Exploring the relationship between periodontal disease and pregnancy complications. J Am Dent Assoc 137:7S–13S

    PubMed  Google Scholar 

  7. Offenbacher S et al (1996) Periodontal infection as a possible risk factor for preterm low birth weight. J Periodontol 67:1103–1113

    CAS  PubMed  Google Scholar 

  8. Madianos PN et al (2001) Maternal periodontitis and prematurity Part II: maternal infection and fetal exposure. Ann Periodontol 6:175–182

    Article  CAS  PubMed  Google Scholar 

  9. Borinski R, Holt SC (1990) Surface characteristics of Wolinella recta ATCC 33238 and human clinical isolates: correlation of structure with function. Infect Immun 58:2770–2776

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Offenbacher S et al (2005) Effects of maternal Campylobacter rectus infection on murine placenta fetal and neonatal survival and brain development. J Periodontol 76:2133–2143

    Article  CAS  PubMed  Google Scholar 

  11. Yeo A et al (2005) Campylobacter rectus mediates growth restriction in pregnant mice. J Periodontol 76:551–557

    Article  PubMed  Google Scholar 

  12. Hofreuter D et al (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74:4694–4707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pearson BM et al (2007) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189:8402–8403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Braun M et al (1999) Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus. J Bacteriol 181:2501–2506

    CAS  PubMed Central  PubMed  Google Scholar 

  15. LaGier MJ, Threadgill DS (2008) Identification of novel genes in the oral pathogen Campylobacter rectus. Oral Microbiol Immunol 2008(23):406–412

    Article  Google Scholar 

  16. Wang B, Kraig E, Kolodrubetz D (2000) Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium-epithelial cell interactions. Infect Immun 68:1465–1473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Young KT, Davis LM, Dirita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679

    Article  CAS  PubMed  Google Scholar 

  18. Konkel ME et al (1999) Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32:691–701

    Article  CAS  PubMed  Google Scholar 

  19. Konkel ME et al (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186:3296–3303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Malik-Kale P, Parker CT, Konkel ME (2008) Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 190:2286–2297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fouts DE et al (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15

    Article  PubMed Central  PubMed  Google Scholar 

  22. Onozato J et al (2009) Cloning sequencing and expression of full-length Campylobacter invasion antigen B gene operon from Campylobacter lari. J Basic Microbiol 49:342–349

    Article  CAS  PubMed  Google Scholar 

  23. Arce RM et al (2010) Characterization of the invasive and inflammatory traits of oral Campylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures. J Reprod Immunol 84:145–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ausubel F et al (1990) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  25. Wren BW et al (1992) Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 78:287–291

    Article  CAS  PubMed  Google Scholar 

  26. Altschul S et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Krogh A et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  29. Emanuelsson O et al (2007) Locating proteins in the cell using TargetP SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  30. Rey S et al (2005) PSORTdb: a protein subcellular localization database for bacteria. Nucleic Acids Res 33:D164–D168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dereeper A et al (2008) Phylogenyfr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dereeper A et al (2008) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  Google Scholar 

  33. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007(56):564–577

    Article  Google Scholar 

  34. Guindon S et al (2005) PHYML online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chevenet F et al (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439

    Article  Google Scholar 

  36. Mucach P, Tanner AC (2000) Campylobacter species in health gingivitis and periodontitis. J Dent Res 79:785–792

    Article  Google Scholar 

  37. Paetzel M et al (2002) Signal peptidases. Chem Rev 102:4549–4580

    Article  CAS  PubMed  Google Scholar 

  38. Yu F et al (1984) Nucleotide sequence of the lspA gene the structural gene for lipoprotein signal peptidase of Escherichia coli. FEBS Lett 173:264–268

    Article  CAS  PubMed  Google Scholar 

  39. Poptsova MS, Gogarten JP (2010) Using comparative genome analysis to identify problems in annotated microbial genomes. Microbiology 156:1909–1917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Michael J. LaGier was supported in part by Florida Gulf Coast University (Internal Grant #09101). This study was also supported in part by the NSF-POWRE MCB-9973861 to Deborah S. Threadgill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. LaGier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaGier, M.J., Threadgill, D.S. Identification and Characterization of an Invasion Antigen B Gene from the Oral Pathogen Campylobacter rectus . Indian J Microbiol 54, 33–40 (2014). https://doi.org/10.1007/s12088-013-0406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0406-z

Keywords

Navigation