Skip to main content
Log in

A 70-kDa molecular chaperone, DnaK, from the industrial bacterium Bacillus licheniformis: gene cloning, purification and molecular characterization of the recombinant protein

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V max of 32.5 nmol Pi/min and a K M of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg2+ and K+ ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritossa E (1962) A new puffing pattern induced by heat shock and DNP in Drosophilia. Experientia 18:571–573

    CAS  Google Scholar 

  2. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  3. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  4. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  5. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670–684

    Article  PubMed  CAS  Google Scholar 

  6. Liberck K, Marszalek J, Ang D, Georgopoulos S, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA 88:2874–2878

    Article  Google Scholar 

  7. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  PubMed  CAS  Google Scholar 

  8. Kelly WL (1999) Molecular chaperones: how J domains turn on Hsp70s. Curr Biol 9:R305–R308

    Article  Google Scholar 

  9. Jordan R, McMacken R (1995) Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. J Biol Chem 270: 4563–4569

    Article  PubMed  CAS  Google Scholar 

  10. Eveleigh DE (1981) The microbial production of industrial chemicals. Sci Am 245:155–178

    Article  Google Scholar 

  11. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:13–32

    Google Scholar 

  12. Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256

    Article  PubMed  CAS  Google Scholar 

  13. Birrer GA, Cromwick AM, Gross RA (1994) γ-Poly(glutamic acid) formation of Bacillus licheniformis 9945a: physiological and biochemical studies. Intl J Biol Macromol 16: 265–275

    Article  CAS  Google Scholar 

  14. Ming LJ, Epperson JD (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Chem 91:46–58

    CAS  Google Scholar 

  15. Murphy T, Roy I, Harrop A, Dixon K, Keshavarz T (2007) Effect of oligosaccharide elicitors on bacitracin A production and evidence of transcriptional level control. J Biotechnol 131:397–403

    Article  PubMed  CAS  Google Scholar 

  16. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245.1253

    Article  PubMed  CAS  Google Scholar 

  17. Schlicker C, Bukau B, Mogk A (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implication for their applicability in biotechnology. J Biotechnol 96:13–21

    Article  Google Scholar 

  18. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689

    Article  PubMed  CAS  Google Scholar 

  19. Banecki B, Zylicz M (1996) Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action. J Biol Chem 271:6137–6143

    Article  PubMed  CAS  Google Scholar 

  20. Gamber J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld J, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15:607–617

    Google Scholar 

  21. Gässler CS, Buchberger A, Laufer T, Mayer MP, Schroder H, Valencia A, Bukau B (1998) Mutations in the DnaK chaperone afftecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci USA 95:15229–15234

    Article  PubMed  Google Scholar 

  22. Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    Article  PubMed  CAS  Google Scholar 

  23. Tilly K, Hauser R, Campbell J, Ostheimer GJ (1993) Isolation of dnaJ, dnaK and grpE homologous from Borrella burgdorferi and complementation of Escherichai coli mutants. Mol Microbiol 7:359.369

    Article  PubMed  Google Scholar 

  24. Motohashi K, Yohda M, Endo I, Yoshida M (1996) A novel factor required for the assembly of the DnaK and DnaJ chaperone of Thermus thermophilus. J Biol Chem 271: 17343–17348

    Article  PubMed  CAS  Google Scholar 

  25. Zuber M, Hoover TA, Dertzbaugh MT, Court DL (1995) Analysis of the DnaK molecular chaperone system of Francisella tularensis. Gene 164:149–152

    Article  PubMed  CAS  Google Scholar 

  26. Boshoff A, Hennessy F, Blatch GL (2004) The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Protein Expr Purifi 38:161–169

    Article  CAS  Google Scholar 

  27. Rupprecht E, Gathmann S, Fuhrmann E, Schneider D (2007) Three different DnaK proteins are functionally expressed in the cyanobacterim Synechocystis sp. PCC 6803. Microbiology 153:1828.1841

    Article  PubMed  CAS  Google Scholar 

  28. Zhang H, Lin L, Zeng C, Shen P, Huang YP (2007) Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol Lett 275:168–174

    Article  PubMed  Google Scholar 

  29. Boshoff A, Stephens LL, Blatch GL (2008) The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties. Intl J Biochem Cell Biol 40:804–812

    Article  CAS  Google Scholar 

  30. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Joergensen PL, Laesen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R077.1–R077.12

    Article  Google Scholar 

  31. Doi RH, Rodriguez RL, Trait RC (1983) Recombinant DNA techniques: an introduction. Addison-Wesley, MA, USA, pp 162–164

    Google Scholar 

  32. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  33. Dagert M, Ehrlich SD (1979) Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6:23–28

    Article  PubMed  CAS  Google Scholar 

  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  36. Lanzett PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    Article  Google Scholar 

  37. Chamberlain LH, Burgoyne RD (1997) Ativation of the ATPase activity of heat shock proteins Hsc70 / Hsp70 by cysteine-string protein. Biochem J 322:853–858

    PubMed  CAS  Google Scholar 

  38. Bohm G., Murh R, Jaenicke R (1992) Quantitative analysis of protein far-UV circular dichroism spectra by neutral networks. Protein Eng 5:191–195

    Article  PubMed  CAS  Google Scholar 

  39. Hibion T, Kaku N, Yoshikawa H, Takabe T, Takabe T (1999) Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions. Plant Mol Biol 40:409–418

    Article  Google Scholar 

  40. Burkholder WF, Panagiotidis CA, Silverstein SJ, Cegielska A, Gottesman ME, Gaitanaris GA (1994) Isolation and characterization of an Escherichia coli DnaK mutant with impaired ATPase activity. J Biol Chem 242:364–377

    CAS  Google Scholar 

  41. Kamath-Loeb AS, Lu C, Suh W, Lonetto MA, Gross GA (1995) Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J Biol Chem 270:30051–30059

    Article  PubMed  CAS  Google Scholar 

  42. Paek KH, Walker GC (1987) Escherichia coli dnaK dull mutants are inviable at high temperatures. J Bacteriol 169: 283–290

    PubMed  CAS  Google Scholar 

  43. Bukau B, Walker GC (1989) Delta dnak52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. J Bacteriol 171:6030–6038

    PubMed  CAS  Google Scholar 

  44. Hesterkamp T, Bukau B (1998) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. EMBO J 17:4818–4828

    Article  PubMed  CAS  Google Scholar 

  45. Buchberger A, Gassler CS, Buttner M, McMacken R, Bukau B (1999) Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication. J Biol Chem 274:38017–38026

    Article  PubMed  CAS  Google Scholar 

  46. JohnsonJr. WC (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7:205–214

    Article  PubMed  CAS  Google Scholar 

  47. Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390

    Article  PubMed  CAS  Google Scholar 

  48. Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 235: 848–854

    Article  PubMed  CAS  Google Scholar 

  49. Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365:664–666

    Article  PubMed  CAS  Google Scholar 

  50. Genevaux P, Georgopoulos C, Kelly WL (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66: 840–857

    Article  PubMed  CAS  Google Scholar 

  51. Palleros DR, Welch WJ, Fink AL (1991) Interaction of Hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88:5719–5723

    Article  PubMed  CAS  Google Scholar 

  52. Palleros DR, Reid KL, McCarty JS, Walker GC, Fink AL (1992) DnaK, Hsp73, and their molten globules: two different ways heat shock proteins respond to heat. J Biol Chem 276:6098–6104

    Google Scholar 

  53. Borges JC, Ramos CHI (2006) Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Arch Biochem Biophys 452:46–54

    Article  PubMed  CAS  Google Scholar 

  54. Grimshaw JPA, Jelesarov H, Schönfelds HJ, Christen P (2001) Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-chock system. J Biol Chem 276:6098–6104

    Article  PubMed  CAS  Google Scholar 

  55. Montgomery DL, Morimoto RI, Gierasch LM (1999) Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J Mol Biol 286: 915–932

    Article  PubMed  CAS  Google Scholar 

  56. Mayer MP, Brehmer D, Gässler CS, Bukau B (2001) Hsp70 chaperone machines. Adv Protein Chem 50:1–45

    Article  Google Scholar 

  57. Wegele H, Müller L, Bucher J (2004) Hsp70 and Hsp90 — a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  PubMed  CAS  Google Scholar 

  58. Vogel M, Mayer MP, Bukau B (2006) Allosteric regulation of Hsp7- chaperones involves a conserved interdomain linker. J Biol Chem 281:38705–38711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Liu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, WC., Wang, XH., Lin, MG. et al. A 70-kDa molecular chaperone, DnaK, from the industrial bacterium Bacillus licheniformis: gene cloning, purification and molecular characterization of the recombinant protein. Indian J Microbiol 49, 151–160 (2009). https://doi.org/10.1007/s12088-009-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-009-0029-6

Keywords

Navigation