Skip to main content
Log in

Cyanobacteria as potential options for environmental sustainability — promises and challenges

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria represent an ancient group of photosynthetic prokaryotes, whose ubiquity, metabolic flexibility and adaptive abilities have made them a subject of research worldwide. These structurally simple organisms combine in themselves interesting facets of plant and bacterial metabolism, which is amenable to genetic exploitation. Despite their globally recognized significance in the sustenance of fertility in rice based cropping systems, they have not been tapped for their extraordinary repertoire of activities, especially their beneficial role as biological agents in remediation and amelioration of soil and water environment and as sinks for greenhouse gases. The information available on these aspects and future lines of research for more efficient utilization of these microorganisms is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roger PA, Zimmerman WJ and Lumpkin TA (1993) Microbiological management of wet land rice fields. In: Soil microbial ecology: application in agricultural and environmental management. (Metting B ed). Dekker, New York, pp 417–455

    Google Scholar 

  2. Mandal B, Vlek PLG and Mandal LN (1998) Beneficial effects of blue green algae and Azolla, excluding supplying nitrogen on wetland rice field: a review. Biol Fertil Soils 27:329–342

    Google Scholar 

  3. Nayak S and Prasanna R (2007) Sol pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5(2):1–6

    Google Scholar 

  4. Prasanna R and Nayak S (2007) Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wet Ecol Manag 15:127–134

    Article  Google Scholar 

  5. Singh RN (1950) Reclamation of “usar” lands in India through blue-green algae. Nature 165:325–326

    Article  Google Scholar 

  6. Roychoudhury P and Kaushik BD (1989) Solubilization of Mussorie rock phosphates by cyanobacteria. Curr Sci 58:569–570

    CAS  Google Scholar 

  7. Oikarinen M (1996) Biological soil amelioration as the basis of sustainable agriculture and forestry. Biol Fertil Soils 22:342–344

    Article  Google Scholar 

  8. Prasanna R, Kumar V, Kumar S, Yadav AK, Tripathi U, Singh AK, Jain MC, Gupta P, Singh PK and Sethunathan N (2002) Methane production in rice soils is inhibited by cyanobacteria. Microbiol Res 157:1–6

    Article  PubMed  Google Scholar 

  9. Gupta AB and Gupta KK (1972) Effect of Phormidium extract on growth and yield of Vigna catjang (Cowpea) T 5269. Hydrobiologia 40:127–132

    Google Scholar 

  10. Kaushik BD and Venkataraman GS (1979) Effect of algal inoculation on yield and vitamin C content of two varieties of tomato. Plant Soil 52:135–136

    Article  CAS  Google Scholar 

  11. Karthikeyan N, Prasanna R, Lata and Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  12. Kuritz T and Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–268

    PubMed  CAS  Google Scholar 

  13. Nayak DR, Babu YJ, Datta A and Adhya TK (2007) Methane oxidation in an intensively cropped tropical rice field soil under long term application of organic and mineral fertilizers. J Environ Qual 36:1577–1584

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan A, Schwarz R, Lieman-Herwitz J and Reinhold L (1994) Physiological and molecular studies on the response of cyanobacteria to changes in the ambient inorganic carbon concentration. In: The molecular biology of cyanobacteria (Bryant DA ed), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 469–485

    Google Scholar 

  15. Price GD, Sultemeyer D, Klughammer B, Ludwig M and Badger MR (1998) The functioning of CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, gene, protein and recent advances. Can J Bot 76:973–1002

    Article  CAS  Google Scholar 

  16. Badger MR and Price GD (2003) CO2 concentrating mechanism in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  17. Kaplan A, Badger MR and Berry JA (1980) Photosynthesis and inorganic carbon pool in blue green alga Anabaena variabilis: response to external CO2 concentration. Planta 149:219–226

    Article  CAS  Google Scholar 

  18. Miller AG and Colman B (1980) Evidence for HCO3 transport by blue green alga (cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    PubMed  CAS  Google Scholar 

  19. Shelp BJ and Canvin DT (1984) Evidence for bicarbonate accumulation by Anacystis nidulans. Can J Bot 62:1398–1403

    Article  CAS  Google Scholar 

  20. Skleryk RS, Tyrrell PN and Espie GS (1997) Photosynthesis and inorganic carbon accumulation in the cyanobacterium Chlorogleopsis sp. strain ATCC27193. Physiol Plant 99:81–88

    Article  CAS  Google Scholar 

  21. Jaiswal PJ and Kashyap AK (2002) Isolation and characterization of mutants of two diazotrophic cyanobacteria tolerant to high concentration of inorganic carbon. Microbiol Res 157:83–91

    Article  PubMed  CAS  Google Scholar 

  22. Badger MR, Price GD, Long BM and Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  23. Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Plant Physiol 58:532–538

    Google Scholar 

  24. De PK (1939) The role of blue-green algae in nitrogen fixation in rice fields. Proc Royal Soc London Ser B 127:121–139

    Article  CAS  Google Scholar 

  25. Apte SK, Reddy BR and Thomas J (1987) Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria. Appl Environ Microbiol 53:1934–1939

    PubMed  CAS  Google Scholar 

  26. Antarikanonda P and Amarit P (1991) Influence of blue-green algae and nitrogen fertilizer on rice yield in saline soils. Kasctsart J Nat Sci 25:18–25

    Google Scholar 

  27. Nayak S, Prasanna R, Pabby A, Dominic TK and Singh PK (2004) Effect of urea and BGA-Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation in soil cores from rice fields. Biol Fertil Soils 40:67–72

    Article  CAS  Google Scholar 

  28. Kaushik BD and Krishna Murti GSR (1981) Effect of blue-green algae and gypsum application on physico-chemical properties of alkali soils. Phykos 20:91–94

    Google Scholar 

  29. Kaushik BD (1989) Reclamative potential of cyanobacteria in salt-affected soils. (Phykos) 28:101–109

    CAS  Google Scholar 

  30. Jha MN, Venkataraman GS and Kaushik BD (1987) Response of Wesiellopsis prolofica and Anabaena sp. to salt stress. Mircen J Appl Microbiol Biotechnol 3:307–317

    Article  Google Scholar 

  31. Subhashini D and Kaushik BD (1981) Amelioration of sodic soils with blue-green algae. Aust J Soil Res 19:361–367

    Article  Google Scholar 

  32. Goel S, Gautam M and Kaushik BD (1997) Nitrogen fixation and protein profiles of halotolerant Nostoc muscorum-R strain isolated from rice fields and ARM-221 strain. Indian J Expt Biol 35:746–750

    CAS  Google Scholar 

  33. Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  34. Kaushik BD (1985) Effect of native algal flora on nutritional and physico-chemical properties of sodic soils. Acta Bot Indica 13:143–147

    Google Scholar 

  35. Kaushik BD and Subhashini D (1985) Amelioration of salt-affected soils with blue-green algae. II Improvement in soil properties. Proc Indian Natl Sci Acad Part B 51:386–389

    Google Scholar 

  36. Kaushik BD (1994) Algalization of rice in salt-affected soils. Ann Agril Res 14:105–106

    Google Scholar 

  37. Venkateswarlu V, Manikya RP and Rajkumar B (1994) Heavy metal pollution in the rivers of Andhra Pradesh, India. J Environ Biol 15:275–282

    CAS  Google Scholar 

  38. Kaushik S, Sahu BK, Lawania RK and Tiwari RK (1999) Occurrence of heavy metals in lentic water pf Gwalior region. Pollution Res 18:137–140

    CAS  Google Scholar 

  39. McHale AP and McHale S (1994) Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol Adv 12:647–652

    Article  PubMed  CAS  Google Scholar 

  40. Fiore MF and Trevors JT (1994) Cell composition and metal tolerance in cyanobacteria. Biometals 7:83–103

    Article  CAS  Google Scholar 

  41. Verma SK and Singh SP (1990) Factors regulating copper uptake in cyanobacterium Curr Microbiol 21:33–37

    CAS  Google Scholar 

  42. Verma SK and Singh SP (1995) Multiple metal resistance in the cyanobacterium Nostoc muscorum. Bull Environ Contam 54:614–619

    CAS  Google Scholar 

  43. Greene B, McPherson R, and Darnall D (1987) Algal sorbants for selective metal ion recovery (Patterson JW and Passion R eds). Lewis Publishers, Chelsea, MI, pp 315–338

    Google Scholar 

  44. Ahuja P, Gupta R and Saxena RK (1999) Zn+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85

    Article  CAS  Google Scholar 

  45. Rai LC, Singh S and Pradhan S (1998) Biotechnological potential of naturally occurring and laboratory grown Microcystis in biosorption of Ni2+ and Cd2+. Curr Sci 74:461–463

    CAS  Google Scholar 

  46. Pradhan S and Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density fo maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584

    Article  CAS  Google Scholar 

  47. Lee LH, Lustigman BK and Murray SR (2002) Combined effect of mercuric chloride and selenium dioxide on the growth of cyanobacteria, Anacystis nidulans. Bull Environ Cont Toxicol 69:900–907

    Article  CAS  Google Scholar 

  48. Yee N, Benning LG, Phoenix VR and Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  PubMed  CAS  Google Scholar 

  49. Arnon (1977) Decoloration of dye waste water by Oscillatoria. Environ Sci 2:39–45

    Google Scholar 

  50. Jinqi L and Houtian L (1992) Degradation of azo dyes by algae. Environ Pollu 75:273–278

    Article  CAS  Google Scholar 

  51. Zhu YK, Xie SQ and Dong JG (1979) Primary test of testing dye waste water by rotating algal disc. Environ Sci 6:37–41

    Google Scholar 

  52. Shah V, Garg N and Madamwar D (2001) An integrated process of textile dye removal and hydrogen evolution using cyanobacterium Phormidium valderianum. World J Microbiol Biotechnol 17:499–450

    Article  CAS  Google Scholar 

  53. Sadettin S and Donmez G (2006) Simultaneous bioaccumulation of reactive dye and chromium (VI) by using thermophilic Phormidium sp. Enzyme Microbiol Technol 41:175–180

    Article  CAS  Google Scholar 

  54. Prasanna R, Dolly DW, Tiwari ON and Singh PK (2000) Microalgae-sewage interactions — implications and future prospects. Proc. Natl. Symp. “Microbes in bioremediations for an ecofriendly environment in the New Millenium”, CAS in Botany, University of Madras, Chennai

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, R., Jaiswal, P. & Kaushik, B.D. Cyanobacteria as potential options for environmental sustainability — promises and challenges. Indian J Microbiol 48, 89–94 (2008). https://doi.org/10.1007/s12088-008-0009-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0009-2

Keywords

Navigation