Skip to main content

O2D: An uncooperative taxi-passenger’s destination predication system via deep neural networks

Abstract

Predicting passenger’s destination with the partial GPS trajectory is a challenging yet meaningful issue in the taxi industry. Existing destination prediction studies mainly focus on the trajectory data mining algorithms. Moreover, most of them are still unsuitable to be directly applied in real scenarios, due to the problems of unknown trajectory completion degree and unsatisfying prediction performance. In this paper, we present a new destination prediction system with the framework of green edge computing. The system does not require any passengers’ cooperative efforts or privacy information, and can consistently make relatively accurate prediction. Specifically, we propose a LSTM based neural network to automatically estimate the completion degree of partial GPS trajectory. Additionally, to improve the overall performance of destination prediction, we extend our previous deep model to adaptively output multi-granularity prediction results (destination prediction from orientation to destination, i.e., O2D). At last, we deploy the O2D system in real environment and further exploit a real-time recommendation service in a cloud-edge collaboration fashion. Extensive experimental results demonstrate the effectiveness and energy efficiency of our uncooperative passenger’s destination prediction system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Liu Y, Wang F, Xiao Y, Gao S (2012) Urban land uses and traffic source-sink areas: Evidence from GPS-enabled taxi data in shanghai. Landsc Urban Plan 106(1):73–87

    Article  Google Scholar 

  2. 2.

    Chen C, Zhang D, Ma X, Guo B, Wang L, Wang Y, Sha E (2016) Crowddeliver: Planning city-wide package delivery paths leveraging the crowd of taxis. IEEE Trans Intell Transp Syst 18(6):1478–1496

    Google Scholar 

  3. 3.

    Chen C, Zhang D, Wang Y, Huang H (2021) Enabling Smart Urban Services with GPS Trajectory Data. Springer

  4. 4.

    Yu Z, Chang H, Yu Z, Guo B, Shi R (2021) Location selection for air quality monitoring with consideration of limited budget and estimation error. IEEE Trans Mob Comput

  5. 5.

    Chen C, Zhang D, Castro PS, Li N, Sun L, Li S, Wang Z (2013) iBOAT: Isolation-based online anomalous trajectory detection. IEEE Trans Intell Transp Syst 14(2):806–818

    Article  Google Scholar 

  6. 6.

    Han L, Yu Z, Wang L, Yu Z, Guo B (2021) Keeping cell selection model up-to-date to adapt to time-dependent environment in sparse mobile crowdsensing. IEEE Internet Things J

  7. 7.

    Yu Z, Han L, Chen C, Guo W, Yu Z (2021) Object tracking by the least spatiotemporal searches. IEEE Internet Things J

  8. 8.

    Koolwal Vartika, Mohbey KK (2020) A comprehensive survey on trajectory-based location prediction. Iran J Comput Sci 3(2):65–91

    Article  Google Scholar 

  9. 9.

    Ruizhi W, Luo G, Shao J, Tian L, Peng C (2018) Location prediction on trajectory data: A review. Big Data Mining and Analytics 1(2):108–127

    Article  Google Scholar 

  10. 10.

    Chen C, Jiao S, Zhang S, Liu W, Feng L, Wang Y (2018) TripImputor: Real-time imputing taxi trip purpose leveraging multi-sourced urban data. IEEE Trans Intell Transp Syst 19(10):3292–3304

    Article  Google Scholar 

  11. 11.

    Leng Biao, Heng Du, Wang Jianyuan, Li Li, Xiong Zhang (2015) Analysis of taxi drivers’ behaviors within a battle between two taxi apps. IEEE Trans Intell Transp Syst 17(1):296–300

    Article  Google Scholar 

  12. 12.

    De Brébisson A, Simon É, Auvolat A, Vincent P, Bengio Y (2015) Artificial neural networks applied to taxi destination prediction. ArXiv Preprint arXiv:1508.00021

  13. 13.

    Besse PC, Guillouet B, Loubes J-M, Royer F (2017) Destination prediction by trajectory distribution-based model. IEEE Trans Intell Transp Syst 19(8):2470–2481

    Article  Google Scholar 

  14. 14.

    Yang Z, Sun H, Huang J, Sun Z, Xiong H, Qiao S, Guan Z, Jia X (2018) An efficient destination prediction approach based on future trajectory prediction and transition matrix optimization. IEEE Trans Knowl Data Eng 32(2):203–217

    Article  Google Scholar 

  15. 15.

    Xue AY, Zhang R, Zheng Y, Xie X, Huang J, Xu Z (2013) Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In 2013 IEEE 29th International Conference on Data Engineering (ICDE) pp 254–265

  16. 16.

    Li X, Li M, Gong Y-J, Zhang X-L, Yin J (2016) T-DesP: Destination prediction based on big trajectory data. IEEE Trans Intell Transp Syst 17(8):2344–2354

    Article  Google Scholar 

  17. 17.

    Toohey K, Duckham M (2015) Trajectory similarity measures. Sigspatial Special 7(1):43–50

    Article  Google Scholar 

  18. 18.

    Li X, Zhao K, Cong G, Jensen CS, Wei W (2018) Deep representation learning for trajectory similarity computation. In 2018 IEEE 34th International Conference on Data Engineering (ICDE) pp. 617–628

  19. 19.

    Liu Y, Jia R, Xie X, Liu Z (2018) A two-stage destination prediction framework of shared bicycles based on geographical position recommendation. IEEE Intell Transp Syst Mag 11(1):42–47

    Article  Google Scholar 

  20. 20.

    Lu Z, Zhu Y, Zheng VW, Yang Q (2012) Next place prediction by learning with multiple models. In Proceedings of the Mobile Data Challenge Workshop

  21. 21.

    Zhang X, Zhao Z, Zheng Y, Li J (2019) Prediction of taxi destinations using a novel data embedding method and ensemble learning. IEEE Trans Intell Transp Syst 21(1):68–78

    Article  Google Scholar 

  22. 22.

    Lv J, Li Q, Sun Q, Wang X (2018) T-CONV: A convolutional neural network for multi-scale taxi trajectory prediction. In 2018 IEEE International Conference on Big Data and Smart Computing (Bigcomp) pp. 82–89

  23. 23.

    Endo Y, Nishida K, Toda H, Sawada H (2017) Predicting destinations from partial trajectories using recurrent neural network. In Pacific-Asia Conference on Knowledge Discovery and Data Mining pp. 160–172

  24. 24.

    Ebel P, Göl IE, Lingenfelder C, Vogelsang A (2020) Destination prediction based on partial trajectory data. In 2020 IEEE Intelligent Vehicles Symposium (IV) pp. 1149–1155

  25. 25.

    Tsiligkaridis A, Zhang J, Taguchi H, Nikovski D (2020) Personalized destination prediction using transformers in a contextless data setting. In 2020 International Joint Conference on Neural Networks (IJCNN) pp. 1–7

  26. 26.

    Zong F, Tian Y, He Y, Tang J, Lv J (2019) Trip destination prediction based on multi-day GPS data. Physica A: Statistical Mechanics and its Applications 515:258–269

    Article  Google Scholar 

  27. 27.

    Chen C, Liao C, Xie X, Wang Y, Zhao J (2019) Trip2Vec: a deep embedding approach for clustering and profiling taxi trip purposes. Pers Ubiquit Comput 23(1):53–66

    Article  Google Scholar 

  28. 28.

    Chen L, Yang D, Nogueira M, Wang C, Zhang D et al (2020) Data-driven c-ran optimization exploiting traffic and mobility dynamics of mobile users. IEEE Trans Mob Comput

  29. 29.

    Lim B, Zohren S (2021) Time-series forecasting with deep learning: a survey. Phil Trans R Soc A 379(2194):20200209

    MathSciNet  Article  Google Scholar 

  30. 30.

    Chen C, Liu Q, Wang X, Liao C, Zhang D (2021) semi-Traj2Graph: Identifying fine-grained driving style with gps trajectory data via multi-task learning. IEEE Transactions on Big Data

  31. 31.

    Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  32. 32.

    Fu C, Huang H, Weibel R (2020) Adaptive simplification of GPS trajectories with geographic context–a quadtree-based approach. Int J Geogr Inf Sci pp. 1–28

  33. 33.

    Jia Y, Zhang Z, Sarwat M (2019) Spatial data management in apache spark: The geospark perspective and beyond. GeoInformatica 23(1):37–78

    Article  Google Scholar 

  34. 34.

    Wang L, Chai D, Liu X, Chen L, Chen K (2020) Exploring the generalizability of spatio-temporal crowd flow prediction: Meta-modeling and an analytic framework. arXiv preprint arXiv:2009.09379

  35. 35.

    Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural probabilistic language model. J Mach Learn Res 3:1137–1155

    MATH  Google Scholar 

  36. 36.

    Liao C, Chen C, Xiang C, Huang H, Xie H, Guo S (2021) Taxi-passenger’s destination prediction via GPS embedding and attention-based bilstm model. IEEE Trans on Intell Transp Syst pp. 1–14

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 61872050, No. 62172066, No. U2013202 and No. 61922053). Xingchen Wang and Chengwu Liao are contributed equally to this work and share the first authorship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liao, C., Chen, C. et al. O2D: An uncooperative taxi-passenger’s destination predication system via deep neural networks. Peer-to-Peer Netw. Appl. (2021). https://doi.org/10.1007/s12083-021-01247-7

Download citation

Keywords

  • Trajectory data mining
  • Destination prediction
  • Green edge computing
  • Deep neural networks
  • Energy efficiency